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Abstract. This paper focuses on the second stage regenerator of a 4 K Gifford-McMahon (G-

M) cryocooler. A three-layer layout of lead (Pb), HoCu2 and Gd2O2S spheres in the second stage 

regenerator derives a good performance at 4 K. After some modifications, we confirmed that the 

cooling power of 1.60 W at 4.2 K was achieved by using this three-layer layout. A two-stage G-

M cryocooler is RDK-408D2 (SHI) and a compressor is C300G (SUZUKISHOKAN) with a 

rated electric input power of 7.3 kW at 60 Hz. In order to further improve, a double pipe 

regenerator was applied to the second stage regenerator. As a double pipe, a stainless steel pipe 

with thin wall was inserted in the coaxial direction into the second stage regenerator. The helium 

flow in the second stage regenerator is expected to be non-uniform flow because of the 

distribution of helium density and the imperfect packing of regenerator material. The double pipe 

regenerator is considered to have an effect of restraining the non-uniform flow. From the 

experimental results, the second stage cooling power of 1.67 W at 4.2 K and the first stage 

cooling power of 64.9 W at 50 K were achieved. 

1. Introduction 

A regenerator has been a key focus influencing the cooling power and efficiency of regenerative 

cryocoolers because its efficiency is directly linked to the cooling performance. As an unchangeable 

physical property, a specific heat of pressurized helium gas increases steeply at the temperatures below 

20 K that leads to a reduction in the heat exchange between regenerator material and helium gas. The 

second stage regenerator of 4 K cryocoolers, such as Gifford-McMahon (G-M) and G-M type pulse tube 

cryocoolers, is not able to avoid it. To suppress the reduction and improve the regenerator efficiency, 

some methods have been developed since a G-M cryocooler reached to 4 K in the 1990s. 

As a major method, magnetic materials that have a large specific heat at around 4 K are filled in the 

cold-end side of the regenerator in which to increase the heat capacity as a layer layout with a metallic 

material. Holmium copper (HoCu2) and gadolinium oxysulfide (Gd2O2S, GOS) [1, 2] will be considered 

as representative magnetic materials. In the metallic materials, lead (Pb) has been used for the long term. 

In recent years, cryocoolers using bismuth (Bi) or zinc (Zn) instead of Pb have been developed. [3] 

Another method is that a set of stacked meshes is partially inserted in the second stage regenerator 

in which sphere material is filled. [4, 5] The experimental results show the cooling power of 4 K and 10 

K G-M cryocoolers is improved. It is thought that the non-uniform flow of helium gas in the regenerator 

is rectified by passing through the stacked meshes. 
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In 2016, Masuyama and Numazawa introduced a new regenerator structure named double pipe 

regenerator that was applied to the second stage regenerator with a two-layer layout comprising of Pb 

and HoCu2 spheres. [6] The cooing power at 4.2 K of G-M cryocooler was improved by 7%.  

In this paper, the double pipe regenerator is applied to a three-layer layout comprising of Pb, HoCu2 

and GOS spheres. The second stage regenerator structure and detailed experimental results for cooling 

performance will be presented. 

2. Experimental Set-up 

2.1. Two-stage G-M cryocooler 

A conventional two-stage G-M cryocooler, RDK-408D2 (SHI), was used to survey the characteristics 

of double pipe regenerator. The cooling power of catalog specifications is 1 W at 4.2 K. A compressor 

is C300G (SUZUKISHOKAN) with a rated electrical input power of 7.3 kW at 60 Hz. The operating 

frequency controlled by inverter and the initial charging pressure are 1.2 Hz and 1.6 MPa, respectively. 

All the experiments have been carried out under these conditions. Figure 1 shows a schematic diagram 

of the G-M cryocooler and compressor. Silicon (Si) diode thermometers are mounted on the first and 

second stages. To adjust the stage temperatures, electric heaters are also attached. These data are 

connected to a PC for data acquisition. A radiation shield, which is cooled with the first stage, covers 

the second stage and cylinder. The pressure in the vacuum chamber is less than 10-4 Pa. 

 

 

Figure 1. A schematic diagram of the two-stage G-M cryocooler, compressor 

and data acquisition system. 

2.2 Double pipe regenerator 

Figure 2 presents two types of the second stage regenerators (the part in which regenerator materials are 

packed). The regenerator has a length and inner diameter of 140 mm and 35 mm, respectively. Figure 2 

(a) shows a three-layer layout (hereinafter called “three-layer”) with Pb, HoCu2 and GOS spheres. The 

volumetric filling ratio of Pb (0.212 - 0.3 mm), HoCu2 (0.15 - 0.3 mm) and GOS (0.25 - 0.3 mm) spheres 

is 50, 20 and 30%, respectively. Parentheses show a sphere diameter of each material. Figure 2 (b) shows 

a double pipe regenerator with three-layer layout (hereinafter called “three-layer pipe”). A stainless steel 

pipe is inserted in the coaxial direction of the Pb part. This pipe has a 10 mm in outer diameter, 0.5 mm 

in thickness, and 67 mm in length. The specification of the pipe was decided by previous study. [6] Note 

that thickness is not optimized since thermal conduction loss exists. The calculated thermal conduction 
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loss of the pipe is approximately 44 mW (thermal conductivity of stainless steel from 60 K to 4.2 K was 

used). Using a thinner pipe is able to reduce the thermal loss. 

To separate and fix each material, a separator, which is made of stacked stainless steel meshes, is set 

to the boundary of each material and both ends of regenerator. Note that its separator is not shown in 

Figure 2. 

 

 
 

 

(a) three-layer 

 

 
(b) three-layer-pipe 

Figure 2. Schematic diagrams of the second stage regenerators: (a) three-layer layout with Pb, 

HoCu2 and GOS spheres (three-layer), (b) double pipe regenerator (three-layer-pipe). A stainless 

steel pipe is inserted in the Pb part. 

 

3. Experimental results 

3.1 Cooling power measurement 

The two-stage G-M cryocooler was operated form room temperature. After approximately two hours, 

the temperature of each cooling stage stabilized. The lowest temperature of three-layer and three-layer 

pipe was 2.56 K and 2.58 K, respectively. Then the cooling power was measured by adding heat load 

by electric heater.  

Figure 3 shows a comparison of the cooling power results for three-layer and three-layer pipe. The 

first stage temperature was varied from 24 K (lowest temperature of the first stage) to 67 K while the 

second stage was producing the cooling power at 4.2 K. As shown, the cooling power of the three-layer 

is divided into three part with increasing, flat, and decreasing areas. The maximum cooling power of the 

three-layer was 1.60 W. The temperature range of the flat area is from 47 K to 57 K at which its 

maximum power is maintained.  

In contrast, the three-layer pipe shows a convex curve. The cooling power that is more than 1.60 W 

is produced in the temperature range where the three-layer keeps flat area. The effect of the double pipe  

 

 

Figure 3. Comparison of the cooling power at 4.2 K for 

three-layer and three-layer pipe. 
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regenerator is appearing clearly. The maximum cooling power of 1.67 W at 4.2 K achieved at the first 

stage temperature of 50 K. The cooling power characteristics will be explained at “Discussion” section. 

Figure 4 presents the first stage cooling power. The second stage was fixed at 4.2 K. The three-layer 

and three-layer pipe have almost the same cooling power. At 50 K, the cooling power of 64.9 W was 

achieved. The electrical input power of the compressor measured by power meter was 7.37 kW. 

3.2 Efficiency evaluation 

To evaluate the efficiency of cryocoolers, percent of Carnot has been often used. The calculated percent 

of Carnot at 4.2 K is 1.6%. In 2015, Green has presented the following equation to estimate the efficiency 

  for two-stage cryocoolers [7] : 
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where 1Q  is the first stage cooling power that produces at temperature 1T . 2Q  is the second stage 

cooling power that produces at temperature 2T , simultaneously. comP  is the electrical input power of  

 

Figure 4. Comparison of the first stage cooling power for 

three-layer and three-layer pipe. 

 

 

Figure 5. The efficiency of 4 K cryocoolers as a function of 

the cooling power at 4.2 K (GM: Gifford-McMahon, GMPT: 

GM type pulse tube, GMJT: GM with J-T valve). [7] 
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the compressor. Substituting the experimental results of the double pipe regenerator at 4.2 K and 50 K 

into Equation (1), one obtains the efficiency of 6.0%. Green also summarized the efficiency of 4 K 

cryocoolers with different types as well as the fitting curve shown in Figure 5. The efficiency of 6.0% 

of this work was also plotted. It is clear that the efficiency of this work is higher than that of other 

cryocoolers at the same cooling power. 

4. Discussion 
In this section, the effect of double pipe regenerator is revealed by characteristics of the second stage 

regenerator including the helium properties, where we assumed that the temperatures of the first stage 

and the warm end of the second stage are the same. Figure 6 shows the temperature distribution of the 

three-layer at three warm end (normalized length equal to 0) of 30 K, 50 K and 70 K by using regenerator 

software of REGEN3.3 [8] which is based on one dimensional equations. The cold end (normalized 

length equal to 1) was fixed at 4.2 K.  From Figure 6, we calculated the helium density at a mean pressure 

of 1.5 MPa shown in Figure 7. The density of the warm end of 30 K is larger than that of 50 K at a 

normalized length of 0 to 0.5. After that, two curves are in agreement at a high density. This means that 

increasing the warm end from 30 K to 50 K decreases an amount of helium gas in the regenerator. The 

decrease in the helium gas increases the mass flow rate at the cold end that leads to an improvement in 

the cooling power. The increase in the mass flow rate, m  , is given by 

   87.0
1

0
5030   dxVfm KKrr   g/s  (2) 

where   is the porosity, rf  is the operating frequency, rV  is the regenerator volume,   is the helium 

density, the subscripts of 30 K and 50 K refer to the warm end, and x is the normalized length. The  

 

Figure 6. Simulated temperature distribution 

of the three-layer of Pb, HoCu2 and GOS for 

three warm end temperatures of 30 K, 50 K 

and 70 K. 

 

Figure 7. Calculated helium density by tem-

perature distribution from Figure 6 for three 

warm end temperatures of 30 K, 50 K and 70 

K. 

 

 

Table 1. Comparison of calculated mass flow rate at the cold end by REGEN3.3 and measured 

cooling power at 4.2 K for three-layer and three-layer pipe. 
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increase in the mass flow rate of 0.87 g/s was estimated. This mass flow rate can be achieved when the 

helium is uniform flow (one dimensional flow) in the second stage regenerator. 

Next, we calculated the mass flow rate at the cold end by REGEN3.3 to reproduce the measured 

cooling power at 4.2 K. It was performed at two warm end temperatures of 30 K and 50 K. The calculated 

results are summarized in Table 1. In the case of the three-layer pipe (double pipe), the increase in the 

mass flow rate from 30 K to 50 K is 0.82 g/s which agrees closely with the estimated value of 0.87 g/s 

from Equation (2). In the case of the three-layer, the increase in the mass flow rate is 0.55 g/s. The 

helium flow in the second stage regenerator is expected to be non-uniform flow because of the 

distribution of helium density and the imperfect packing of regenerator material. Consequently, the mass 

flow rate at the cold end is decreased. The value of 0.55 g/s shows that the influence of non-uniform 

flow in the three-layer is larger than that of the three-layer pipe. The effect of non-uniform flow is 

considered to be large in the Pb part due to low helium density. Thus, the double pipe regenerator is able 

to restrain the non-uniform flow, then increase the mass flow rate at the cold end. 

On the other hand, the cooling power at 4.2 K deteriorates with too high warm end temperatures 

exceeding 70 K. It can predict from the cooling power results shown in Figure 3. As shown in Figure 7, 

the helium density of the warm end of 70 K occupies a long length with lower density at the warm side 

in the regenerator. It indicates that the heat exchange between regenerator material and helium gas will 

be insufficient. Thus, regenerator loss becomes large that leads to a decrease in the cooling power. 

5. Summary 

To improve the efficiency and cooling power at 4.2 K of a G-M cryocooler, a double pipe regenerator 

was applied to the second stage regenerator comprising of Pb, HoCu2 and GOS spheres. The second 

stage cooling power of 1.67 W at 4.2 K and the first stage cooling power of 64.9 W at 50 K were 

achieved. The experimental results prove that the double pipe regenerator is able to improve the second 

stage cooling power at 4.2 K. The regenerator analysis shows that the double pipe regenerator is able to 

restrain the non-uniform flow, then increase the mass flow rate at the cold end. This effect becomes 

large at the first stage temperature of around 50 K. 
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