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Abstract. Several new analytical techniques require long-distance cryogenic transfer of samples 
that need to be kept at stable temperatures for long time periods, but also to be additionally 
contamination-free. In this study we developed a passive transfer system to fulfil those 
requirements. With 125mL of liquid nitrogen stored, one cryo-sectioned sample was maintained 
around 120±1 K and a pressure of about 3x10-7 mbar for at least 2 hours. With a total transfer 
weight of 5 Kg this system can be easily handled and carried by any transportation means so that 
the same sample can be used for different imaging centres located remotely permitting 
correlative studies. 

1. Introduction 
Over the past decades, electron-beam imaging techniques, such as Transmission Electron Microscopy 
(TEM) or Scanning Electron Microscopy (SEM) have become main-stream methods for acquiring ultra- 
high resolution morphological information of biological systems of interest [1][2]. To minimize 
volatilization or degassing of the sample in ultra-high vacuum environment of TEM or SEM, classical 
sample preparation procedures require a chemical fixation of the biological sample and embediment in 
an epoxy resin matrix before thin section slicing. However, the distribution of soluble compounds (ions, 
metabolites, drugs, etc.) involved in a multitude of fundamental biological processes are not preserved 
during the classical sample preparation. 

The only certain way to preserve and observe soluble molecular compounds and ions unperturbed 
in-situ in a biological tissue is to create and maintain highly controlled cryo-conditions throughout the 
chain of preparative and observational procedures. With the introduction of cryopreservation techniques, 
cryo-EM imaging techniques have been intensively developed for resolving structural information of 
the biological samples at the sub-cellular or even atomic level [3][4]. 

Correlation studies based on cryo-EM and cryo-Fluorescence Microscopy, or cryo-Mass 
Spectrometry (MS) have showed great potential to study targeted biological process or molecules by 
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introducing either fluorophore-labeled or stable isotope-labeled biomarker and then overlapping 
acquired functional images with ultra-high resolution cryo-EM images. Therefore, a reliable vitrified 
sample transfer system is needed to keep the sample contamination-free during transportation. Currently 
nearly all commercially-available cryo-transfer system are built only for a specific cryo-imaging or – 
analysis instrument. Only several customized system has been realized, but they are not designed for 
long-distance transfer[5][6]. 

1.1. Operational concept 
To conduct a correlation study under cryo-conditions, biological samples are first prepared by labelling 
biomarkers sensitive to the functional imaging technique. Then those samples will be quickly plunged 
into liquid nitrogen or high-pressure frozen by cold nitrogen gas so that vitrified state of those samples 
can be achieved. Before carrying out high-resolution structural imaging, surfaces of the vitrified samples 
need to be flattened and necessary etching and coating procedures ensure that sample structure of interest 
exposes under the EM scanning. Critical cryo-transfer at proper temperature and pressure after the EM 
scanning ensures the same vitrified samples used for mapping their functions of interest without altering 
samples’ vitrified state. Finally, functional images of the vitrified samples are overlapped with structural 
images so that biological function can be correlated to specific compartment of the studied biological 
system. A typical operational concept of a correlation study involving cryo-SEM and cryoNanoSIMS 
can be found in the Figure 1. 

 

Figure 1. A typical operational concept of a correlation study involving cryo-EM 
and cryo-MS. A critical cryo-transfer under proper conditions occurs between high- 
resolution EM imaging and functional MS imaging. 

1.2. Requirements 
The aim of the present project is to develop a more generally applicable, light-weight transfer system 
which fulfils the following design requirements for storing and transferring vitrified samples: 1) The 
system shall provide a contamination-free storage environment for vitrified biological samples with a 
preferred temperature of 130±5 K for at least two hours; 2) The total transfer weight shall not exceed 5 
Kg; 3) The system shall be adapted to different imaging modalities which might be located far away 
from each other, e.g. hundreds of kilometers in certain cases. 
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2. Construction of the prototype 
The cryo-transfer system was designed with three building blocks: a vitrified sample carrier with a LN2 
reservoir in the surrounding vacuum where the sample was stored, an adaptation flange that allowed 
access to different imaging modalities, and a sample manipulator which could move a sample in 
translational, rotational and radial directions. An additional mobile LN2 transfer unit was built for cases 
in which extra coverage of a larger distance would be needed. 

2.1 Sample carrier 
The sample carrier was based on a high vacuum chamber consisting of a standard stainless steel T-piece 
(KF50) and a home-made stainless steel extension as main body (1 in Figure 2). To avoid significant 
thermal convection in the chamber, high vacuum quality was achieved by sealing the vacuum chamber 
with two mini KF-flanged UHV gate valves (2) on the horizontal axis and a top flange with a VITON 
O-ring. In the vacuum chamber, an argon-arc welded LN2 reservoir made in 321L type of thin-walled 
stainless steel (OD 44.45 mm) with a total volume of approximately 125 mL was suspended under the 
top flange with a SS tube (3) connected and then laser-welded on the top flange for storing LN2. 
        Considering the conventional vitrified sample loading procedure using the cryo-SEM preparation 
station (PP3010T, Quorum Technologies, UK), the LN2 filling tube was not located in the middle but 
close to the rim of the reservoir. The purpose of this specific design was to allow placing the carrier 
vertically without losing major cooling power of the stored liquid nitrogen. Three short perforated SS 
tubes (4) were soft-welded around the reservoir in a symmetrical way so that the total weight of the 
reservoir will not be loaded on the filling tube and at the same time thermal conduction could be 
minimized. 

 
Figure 2. A complete prototype of the vitrified sample carrier (left) with details inside (right): 1. Top 
flange; 2 Mini gate valves; 3. Filling tube; 4. Supporting tubes; 5. LN2 reservoir; 6. Reservoir bottom; 
7. Sample cooling stage; 8. Relief valve; 9. Connection for electronics; 10. Level meter. 
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Under the LN2 reservoir, a cooling stage (7) made in 6061 type aluminum block was firmly bolted 
to it to ensure an efficient heat conduction. A large polished body surface of the cooling stage was 
considered to be both an effective thermal conducting part for cooling the sample and an anti- 
contaminator for the sample at the same time. Two copper-beryllium (BeCu) springs were made and 
bolted on the side of the cooling stage and used for reinforcing the contact between standard cryo-SEM 
sample holder and the cooling stage. 

To monitor the LN2 reservoir a level warning insert was built. A chip-based RTD probe (FK422 
PT1000B, Heraeus, Germany) was fixed inside the perforated level warning insert (10) at a desired 
safety level, approx. 20 mm above the bottom of the reservoir in this project (25% of the total volume). 
Once the LN2 dropped below the safety level, the linear comparator circuit powered by a 3V coin battery 
would trigger a siren to signal the need for a LN2 refill. Besides, a gas relief valve (8 in Figure 2, 
D520T1-2M. Circle Seals, USA) was installed on the top of the level warning insert, which was 
connected to the nitrogen filling port so that nitrogen gas could be safely released to atmosphere once 
the pressure inside the nitrogen reservoir is higher than the pressure limit (0.1 barG). 

2.2 Sample manipulator 
Manipulation of vitrified samples was realized by a homemade vacuum-sealed sample manipulator. The 
manipulator (part C in Figure 3) was connected to one of the VAT gate valves close to the LN2 filling 
port (see Figure 3). The main challenge of the sample manipulator was to seal the high vacuum and at 
the same time be able to rotate, translate and wobble the sample. The rotatory and translational 
movements were ensured by two linear shaft guide made in PTFE and a dynamic seal. To fulfil the 
requirement of movement in radial direction, a hydroformed bellow (2 in Figure 3, Witzenmann, 
Germany) was welded to flanges (see Figure 3) so that sample can be tilted with an angle of max. 5° 
under vacuum. Differ from most of UHV-compatible sample manipulators, this design had a sapphire 
window (3) enabling not only visual inspection during loading, but also a precise position of the transfer 

 

Figure 3. Complete assembly of the transfer system including the adaptation flange (A), the sample 
manipulator (C) and the sample carrier (B). Cross section of the sample manipulator design is shown 
at the top-right corner: 1. KF50 flange; 2. Hydroformed bellow; 3. Sapphire window; 4. Dynamic 
seal; 5. Linear shaft guide bearing. 
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shaft and its belonging vacuum seal (see Figure 3) so that the loading axes of both cryo-SEM and the 
sample manipulator were aligned. 

2.3 Mobile LN2 filling unit 
In addition to the transfer system, a mobile LN2 filling unit with a volume of 1 liter was built. Sufficient 
overpressure inside the Dewar was built up by manually compressing the evaporated nitrogen gas 
volume. This forced LN2 to be transferred through a plastic transfer line isolated with foam. The line 
ended into a sintered outlet to obtain a well-regulated flow into the LN2 reservoir in the vitrified sample 
carrier and therefore to reduce the total consumption for one refill. Note that the mobile filling unit can 
be built with any lab grade vacuum LN2 Dewar used for storing LN2. Similar to the principle used for 
commercially-available product for large volume LN2 filling, evaporating LN2 by heating up a resistor 
sealed and placed in a LN2 Dewar would generate an overpressure and facilitate the LN2 filling. 

3. Experimental results and discussion 
To evaluate the performance of the vitrified sample carrier vacuum quality and final temperature 
measurement on the sample position were carried out. A base vacuum of 5x10-5 mbar can be achieved 
at room temperature without continuously pumping on the vacuum chamber. After filling LN2 into the 
reservoir and stabilizing in a period of 30 minutes, an improved vacuum ~ 3x10-6 mbar was reached. 

Temperature on the position that sample would experience in a real transfer was separately 
measured by a thermometer clamped on the cryo-SEM sample holder (see Figure 4). After a short 
cooling down period around 1 hour (Phase I in Figure 4), the actual temperature was stabilized around 
120±1 K for a period of 2 hours (Phase II in Figure 4). Note that the filling signal out from the level 
warning insert would be given around 1.5 hours after cooling down the system from room temperature 
for the first time. To avoid a temperature increase of the vitrified sample in case of no present of LN2, 
a mobile LN2 filling unit can be used. Usually 1 L LN2 in the mobile filling unit can fill the reservoir 
2-3 times. It was noticed that most of the LN2 consumption was caused by the poorly-isolated transfer 
line. But even with 2 times refill possibility the sample could be transferred in a much longer time period. 

 

Figure 4. Temperature evolution in one full operational cycle including cooling down (I), transfer 
(II) and warm up(III) phases. The temperature measurement setup is shown in the image insert at the 
bottom-right corner. A pt100 thermometer (1) was clamped in the SEM sample holder (2) and the 
heat dumping of thermometer wiring was done by fixing wires on the bottom of the LN2 container. 
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This would extend the transfer distance up to hundreds of kilometers through a sample transfer by car. 
In the field of cryo-biology research ice contamination often plays an essential role in image 

quality. Since the measured temperature on sample position was around 120 K, which was 15 K lower 
than the expected temperature, namely 135 K (reading from the phase-diagram of water at a given 
pressure of 3x10-7 mbar), a small amount of ice could be found on the sample after long-distance transfer. 
To avoid severe ice contamination over long distance transfer, a gas absorber, such as zeolite, was used 
to improve vacuum quality below 3x10-7 mbar. In our test transfer no severe ice formation was observed 
on the SEM images over a long period of 4-5 hours. Another source of contamination was the bad 
vacuum isolated in the sample manipulator. Once the manipulator was connected after the transfer, this 
part of blocked air normally could not be pumped out and therefore introduced a potential contamination 
source for the vitrified sample. In our preliminary test, a bypass bellow (not shown here) connecting 
both the sample manipulator and the adaptation flange was able to be used for pumping both spaces 
down to a similar vacuum quality (~ 10-7 mbar) as the sample carrier before opening the gate valves to 
access the vitrified samples. In the future, more considerations will be taken into account regarding to 
balance the pressure and desired temperature, e.g., thermal simulation of various designs of cooling 
stage to optimize the final sample temperature. 

The versatility of the built transfer system is mainly realized by the widely implemented KF type 
of quick connection flanges in the present study. Several advantages include that, first, it makes the 
system easily and quickly adaptable to various imaging modalities. By changing the adaptation flange 
and its belonging sample manipulator, the entire transfer system can be assembled or disassembled in 
10 minutes. Meanwhile, the total weight of the carrier is reduced compared to the case in which other 
type of standard vacuum flanges, e.g., a CF type, were implemented. Second, since an extra set of 
adaptation flange and sample manipulator could be stored in the imaging facility in which sample will 
be transferred, a real cryo-transfer care only needs to be taken for the sample carrier. Therefore, a total 
transfer weight can be limited to 5 Kg in our case. First series of transfer experiments were carried out 
by packing the tested vitrified sample carrier in a shoulder bag and carrying a prepared vitrified sample 
from a cryo-SEM facility to cryoNanoSIMS lab at University of Lausanne. Both labs were located in 
the same campus in this case, but with a walking distance of 25-30 minutes. The initial temperature of 
transferred vitrified samples was kept at 125±1 K, which was controlled by the cryo-SEM preparation 
station. An average total transfer time of 45-50 minutes was able to be achieved and no water 
condensation outside of the carrier or ice crystal on the surface of the vitrified sample was observed 
during all transfers (n=6). In the near future, more prepared vitrified sample will be transferred among 
different cities due to the need for further correlative studies. 

Disadvantage of the KF flanges is that ultra-high vacuum is difficult to be achieved or maintained 
since high temperature baking procedures could not be performed with KF type flanges. Due to the 
common vacuum quality between 10-7 and 10-9 mbar in cryo-imaging system, the present transfer system 
requires a pre-pumping period (dependent on the pre-pumping volume of the imaging modality) to reach 
the targeted vacuum quality for imaging. 

Not to ignore that another advantage of the discussed transfer system is the unnecessariness of any 
electric power supply, which could become a critical or even limiting factor for vitrified sample transfer. 
This is because temperature and pressure inside the carrier become very stable during the transfer with 
the use of gas absorber. 

4. Conclusion 
In the present study, a contamination-free long-distance cryo-transfer system was realized after solving 
technical issues such as improving high-vacuum quality in the vitrified sample carrier, approaching the 
desired temperature on the sample to maintain sample’s vitrified state and increasing the system 
flexibility so that it could be easily handled. It showed a great system stability both with respect to 
pressure and temperature and was able to be used passively (without sophisticated electronics). 
Combined with the additional mobile LN2 filling unit, one vitrified sectioned biological sample could 
be transferred each time over a long distance. 
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