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Abstract. A three dimensional finite element model is built to compute the motions of a pipe 
that is being laid on the seabed. This process is geometrically nonlinear, therefore co-rotational 
beam elements are used. The pipe is subject to static and dynamic forces. Static forces are due 
to gravity, current and buoyancy. The dynamic forces exerted by the water are incorporated using 
Morison’s equation. The dynamic motions are computed using implicit time integration. For this 
the Hilber-Hughes-Taylor method is selected. The Newton-Raphson iteration scheme is used to 
solve the equations in every time step. During laying, the pipe is connected to the pipe laying 
vessel, which is subject to wave motion. Response amplitude operators are used to determine the 
motions of the ship and thus the motions of the top end of the pipe.   

1. Introduction  
Typical numerical simulations of offshore pipelaying tend to have high computational costs. This is due 
to the long time period of a simulation in combination with several variables, such as wave direction 
and water depth. Commercial software is available for these type of simulations, such as Offpipe [1], 
PipeLay [2] and Orcaflex [3]. Each of these software packages has its possibilities as well as limitations. 
Due to increased analysis demands and market trends there is a need for quicker and more efficient 
software. The current work brings existing methods together in order to build an efficient dynamic model 
for pipe laying simulations. 

Offshore pipelay analyses are typically performed using a Finite Element approach. In these analyses 
large rotations of the elements occur. In literature several methods for large rotations can be found. 
Reissner [4] and Simo and Vu Quoc [5], [6] developed the geometrically exact beam method. This 
method is named exact because no assumptions have been made on the size of the deformations. 
However, since discretization will be used, this method is still an approximation.  This method converges 
in a small number of iterations for small beam lengths. However, to analyze offshore pipe laying 
efficiently, long elements are required. The geometrically exact method requires a large number of 
iterations to converge when using long elements. 

An alternative method for large rotations is the absolute nodal coordinate formulation, presented by 
Shabana [7]. An advantage of this method is that it results in a constant mass matrix. However when 
using a time integration method from the Newmark-family [8], the mass matrix is not inverted in every 
iteration. Thus the only advantage of a constant mass matrix is that is does not need to be rotated. 
Disadvantages of this method are the more complex stiffness matrix and the larger number of degrees 
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of freedom compared to the co-rotational method. Furthermore Romero [9] and Bauchau and Han [10] 
compared the absolute nodal coordinate and geometrically exact formulations. In both papers, no 
improvements of accuracy or computational costs are found for the absolute nodal coordinate 
formulation.  

Shabana [11] suggested a substructuring technique with a floating frame of reference. The 
deformations of the substructures are described by elastic vibration modes. This method is often used in 
multibody dynamics. Disveld [12] investigated in his MSc thesis if this method would be more efficient 
for offshore pipelaying application. Additionally, he investigated a recursive method with two fixed 
ends. These methods were shown to be less efficient compared to the co-rotational finite element 
method. 

The chosen method for large rotations in the current numerical model is therefore the co-rotational 
method, presented in Section 2. The co-rotational method has been well established in literature [13], 
[14] and more recently [15], [16]. The formulation used in the current model is the method of Crisfield 
[17][18].  

General distributed loads are added in the global coordinate system in Section 3. Thereafter two 
special kinds of distributed loads are considered. In Section 4 buoyancy is added using the method of 
Yazdchi [19]. New in this paper is the addition of equivalent moments for the buoyancy due to a 
distributed pressure. Furthermore, when the pipe moves through the water, forces are exerted by the 
water on the pipe. These hydrodynamic forces are included in the model using Morison’s equation [20]. 
This also accounts for the forces due to the velocity and acceleration of the water, as can be seen in 
Section 5. 

To be able to use large time steps in the numerical time integration, implicit time integration is 
chosen. A well-known method is the Newmark-β method [8], which requires parameters β and γ. If these 
parameters are chosen at 𝛽𝛽 = 1/4 and 𝛾𝛾 = 1/2, the method is second order accurate and 
unconditionally stable for linear systems. However the current model is nonlinear. To maintain stability 
numerical damping can be added by increasing parameter γ, but then the second order accuracy is lost. 
For this reason, for the Hilber-Hughes-Taylor method, or HHT-α method [21], is selected, which is an 
expansion of the Newmark-β method. The HHT-α method uses a parameter α to include damping and 
is second order accurate independent of its parameter. Further details of this method can be found in 
[21]. In Section 6 both static and dynamic examples using the presented method are presented.  

2. Three dimensional co-rotational method 
This section is an introduction to the co-rotational beam element in a three dimensional space. This 
element has two nodes. Each node has six degrees of freedom, three translations and three rotations. The 
foundation of the method is that it uses a local coordinate system to calculate small strains. This is 
presented in Section 2.1. This local coordinate system is rotated to the global coordinate system. The 
corresponding rotation matrix is shown in Section 2.2. 

Because the co-rotational method is geometrically nonlinear, an iterative solution procedure is 
needed. The Newton-Raphson method is selected. 

𝒖𝒖𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛+1   = 𝒖𝒖𝑠𝑠𝑠𝑠𝑠𝑠n − K𝑠𝑠𝑠𝑠𝑠𝑠
−1 𝑭𝑭𝑠𝑠𝑠𝑠𝑠𝑠 (1) 

Here 𝑭𝑭𝑠𝑠𝑠𝑠𝑠𝑠 is the system force vector. This vector is built using the global force vector and the external 
force vector: 𝑭𝑭 = 𝑭𝑭𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑭𝑭𝑒𝑒𝑒𝑒𝑒𝑒. The internal force vector is derived in section 2.3. 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 is the system 
stiffness matrix. This matrix is assembled from the tangent stiffness matrices of all elements. The tangent 
stiffness matrix is presented in section 2.4. 

2.1. Local coordinate system  
In a co-rotational formulation a local 'co-rotational' coordinate frame is introduced. The origin of this 
frame is placed on the first node of the element. The local coordinate frame is placed such that the x-
axis runs through the first and the second node. In other words the displacements in local y- and z-
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direction are always zero at the nodes. This placement of the coordinate system results in only seven 
local degrees of freedom.  

 
Figure 1. Co-rotational beam element with orthogonal unit vectors to define rotations 

𝒑𝒑𝑙𝑙 = [𝜓𝜓1,𝜃𝜃1,𝜙𝜙1,𝑢𝑢,𝜓𝜓2,𝜃𝜃2,𝜙𝜙2]𝑇𝑇 (2) 

An important factor when rotating in three dimensions is that the rotations are in general not 
commutative. This means that a rotation cannot be added to another rotation. The three dimensional 
rotations are implemented using nodal triads. Detailed derivations can be found in [18]. For each 
element, two nodal triads, T and U, and one element triad, E, are defined. This can be seen in Figure 1. 
Each triad contains three orthogonal unit vectors. The unit vectors of the three triads are named 𝒕𝒕𝑖𝑖, 𝒆𝒆𝑖𝑖 
and 𝒖𝒖𝑖𝑖.  

 T = [𝒕𝒕1, 𝒕𝒕2, 𝒕𝒕3]    E = [𝒆𝒆1, 𝒆𝒆2, 𝒆𝒆3]    U = [𝒖𝒖1,𝒖𝒖2,𝒖𝒖3] (3) 

These unit vectors define the local rotations of the element nodes. The middle triad defines the element 
coordinate system. As shown by Crisfield [18], these unit vectors can be used to find the local rotations.  

2 sin𝜓𝜓1 = −𝒕𝒕3𝑇𝑇𝒆𝒆2 + 𝒆𝒆3𝑇𝑇𝒕𝒕2 
2 sin 𝜃𝜃1 = 𝒕𝒕3𝑇𝑇𝒆𝒆1 − 𝒆𝒆3𝑇𝑇𝒕𝒕1 
2 sin𝜙𝜙1 = −𝒕𝒕2𝑇𝑇𝒆𝒆1 + 𝒆𝒆2𝑇𝑇𝒕𝒕1 
2 sin𝜓𝜓2 = −𝒖𝒖3𝑇𝑇𝒆𝒆2 + 𝒆𝒆3𝑇𝑇𝒖𝒖2 
2 sin 𝜃𝜃2 = 𝒖𝒖3𝑇𝑇𝒆𝒆1 − 𝒆𝒆3𝑇𝑇𝒖𝒖1 
2 sin𝜙𝜙2 = −𝒖𝒖2𝑇𝑇𝒆𝒆1 + 𝒆𝒆2𝑇𝑇𝒖𝒖1 

(4) 

After each iteration, nodal triads T and U are updated as follows. 

T𝑛𝑛+1 = ΔT(𝛥𝛥𝜶𝜶)T𝑛𝑛 
U𝑛𝑛+1 = ΔU(𝛥𝛥𝜷𝜷)U𝑛𝑛 (5) 

Here 𝛥𝛥𝜶𝜶 and 𝛥𝛥𝜷𝜷 are the iterative spin variables. These variables are the update increments of the angles 
at the end of an iteration. They are non-additive and represent the vector about which the nodal system 
is rotated. The length of the vector is the angle. ΔT and ΔU are rotation matrices. Here it is chosen to use 
Rodrigues rotation matrix [22].  

The element triad E is updated differently. For this matrix first a rotation matrix from the first node 
to the second node is determined.  

ΔR(𝜸𝜸) = UT𝑇𝑇  (6) 

Spurrier’s algorithm [23] is applied to ΔR to find spin variable 𝜸𝜸. This is used to find the mean rotation R�. 
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R� = ΔR𝑚𝑚 �
𝜸𝜸
2
�T (7) 

Here ΔR𝑚𝑚(𝛄𝛄/2) is obtained using the Rodrigues rotation matrix. The mean rotation R� is used to find 
the matrix E. First the vector 𝒆𝒆1 is obtained by 

𝒆𝒆1 =
1
𝐿𝐿

(𝒙𝒙21 + 𝒅𝒅21) =
1
L
�
𝑥𝑥2 − 𝑥𝑥1 + 𝑢𝑢2 − 𝑢𝑢1
𝑦𝑦2 − 𝑦𝑦1 + 𝑣𝑣2 − 𝑣𝑣1
𝑧𝑧2 − 𝑧𝑧1 + 𝑤𝑤2 − 𝑤𝑤1

� (8) 

Here 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 and 𝑧𝑧𝑖𝑖 are the coordinates of node 𝑖𝑖 and 𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖 and 𝑤𝑤𝑖𝑖 are the displacements of node 𝑖𝑖. These 
are all in the global coordinate system. Using Crisfield’s mid-point rule approximation and 𝑅𝑅� =
[𝒓𝒓1, 𝒓𝒓2,𝒓𝒓3], 𝒆𝒆2 and 𝒆𝒆3 are found. 

2.2. Rotation matrix 
A rotation matrix is derived to rotate from the local coordinate system to the global coordinate system. 
This is done by taking the variation of the local variables.  

𝛿𝛿𝒑𝒑𝑙𝑙 = [𝛿𝛿𝛿𝛿1, 𝛿𝛿𝛿𝛿1, 𝛿𝛿𝛿𝛿1, 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿2, 𝛿𝛿𝛿𝛿2, 𝛿𝛿𝛿𝛿2]𝑇𝑇 = B𝛿𝛿𝒑𝒑 (9) 

This derivation can be found in [18]. Note that a different coordinate system is used here. The resulting 
rotation matrix is 

B =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
2 cos𝜓𝜓1

(𝒕𝒕2𝑇𝑇Q(𝒓𝒓3) − 𝒕𝒕3𝑇𝑇Q(𝒓𝒓2) + [𝟎𝟎,𝒆𝒆2𝑇𝑇𝒕𝒕3� − 𝒆𝒆3𝑇𝑇𝑆𝑆𝒕𝒕2� ,𝟎𝟎,𝟎𝟎])

−1
2 cos 𝜃𝜃1

(𝒕𝒕1𝑇𝑇Q(𝒓𝒓3) + [𝒕𝒕3𝑇𝑇A, 𝒆𝒆1𝑇𝑇𝒕𝒕3� − 𝒆𝒆3𝑇𝑇𝒕𝒕1� ,−𝒕𝒕3𝑇𝑇𝐴𝐴,𝟎𝟎])

1
2 cos𝜙𝜙1

(𝒕𝒕1𝑇𝑇Q(𝒓𝒓2) + [𝒕𝒕2𝑇𝑇A, 𝒆𝒆1𝑇𝑇𝒕𝒕2� − 𝒆𝒆2𝑇𝑇𝒕𝒕1� ,−𝒕𝒕2𝑇𝑇A,𝟎𝟎])

[−𝒆𝒆1𝑇𝑇 ,𝟎𝟎, 𝒆𝒆1𝑇𝑇 ,𝟎𝟎]
1

2 cos𝜓𝜓2
(𝒖𝒖2𝑇𝑇Q(𝒓𝒓3) − 𝒖𝒖3𝑇𝑇Q(𝒓𝒓2) + [𝟎𝟎,𝟎𝟎,𝟎𝟎,𝒆𝒆2𝑇𝑇𝒖𝒖3� − 𝒆𝒆3𝑇𝑇𝒖𝒖2�])

−1
2 cos 𝜃𝜃2

(𝒖𝒖1𝑇𝑇Q(𝒓𝒓3) + [𝒖𝒖3𝑇𝑇A,𝟎𝟎,−𝒖𝒖3𝑇𝑇A, 𝒆𝒆1𝑇𝑇𝒖𝒖3� − 𝒆𝒆3𝑇𝑇𝒖𝒖1�])

1
2 cos𝜙𝜙2

(𝒖𝒖1𝑇𝑇Q(𝒓𝒓2) + [𝒖𝒖2𝑇𝑇A,𝟎𝟎,−𝒖𝒖2𝑇𝑇A, 𝒆𝒆1𝑇𝑇𝒖𝒖2� − 𝒆𝒆2𝑇𝑇𝒖𝒖1�])
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (10) 

This is a 7x12 matrix. Here 𝒕𝒕�𝑖𝑖 is the skew symmetric cross product matrix of vector 𝒕𝒕𝑖𝑖. Furthermore Q 
is the following 3x12 matrix. 

Q(𝒓𝒓𝑖𝑖) = [−Q1(𝒓𝒓𝑖𝑖), Q2(𝒓𝒓𝑖𝑖), Q1(𝒓𝒓𝑖𝑖), Q2(𝒓𝒓𝑖𝑖)] (11) 

with 

Q1(𝒓𝒓𝑖𝑖) = −
1
2
𝒓𝒓𝑖𝑖𝑇𝑇𝒆𝒆1A −

1
2

(𝒆𝒆1 + 𝒓𝒓1)𝒓𝒓𝑖𝑖𝑇𝑇A 

Q2(𝒓𝒓𝑖𝑖) = −
1
2
𝒓𝒓𝚤𝚤� +

1
4
𝒓𝒓𝑖𝑖𝑇𝑇𝒆𝒆1𝒓𝒓𝚤𝚤� +

1
4

(𝒆𝒆1 + 𝒓𝒓1)𝒆𝒆1𝑇𝑇 𝒓𝒓𝚤𝚤�  
(12) 

and  

A =
1
𝐿𝐿

(I − 𝒆𝒆1𝑇𝑇𝒆𝒆1). (13) 

Here I is a 3x3 identity matrix.  
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2.3. Internal forces 
The three dimensional stiffness matrix can be found in many textbooks like [24]. It is presented as a 
12x12 matrix. However the size of this matrix can be reduced when using the co-rotational method. 
Since the number of local degrees of freedom is reduced to seven, the local stiffness matrix is reduced 
to 7x7. 

K𝑙𝑙 =
1
𝐿𝐿0

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐺𝐺𝐺𝐺 0 0 0 −𝐺𝐺𝐺𝐺 0 0
0 4𝐸𝐸𝐸𝐸 0 0 0 2𝐸𝐸𝐸𝐸 0
0 0 4𝐸𝐸𝐸𝐸 0 0 0 2𝐸𝐸𝐸𝐸
0 0 0 𝐸𝐸𝐸𝐸 0 0 0
−𝐺𝐺𝐺𝐺 0 0 0 𝐺𝐺𝐺𝐺 0 0

0 2𝐸𝐸𝐸𝐸 0 0 0 4𝐸𝐸𝐸𝐸 0
0 0 2𝐸𝐸𝐸𝐸 0 0 0 4𝐸𝐸𝐸𝐸⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (14) 

The stiffness matrix multiplied by the local displacements vector yields the local element forces.  

𝒇𝒇𝒍𝒍 = K𝑙𝑙𝒑𝒑𝑙𝑙 (15) 

The forces in the global coordinate system are found by rotating the local forces.  

𝑭𝑭𝑖𝑖𝑖𝑖𝑖𝑖 = B𝑇𝑇𝒇𝒇𝑙𝑙 (16) 

2.4. Consistent tangent stiffness 
The tangential stiffness matrix is found by taking the variation of the forces in the global coordinate 
system.  

𝛿𝛿𝑭𝑭𝑖𝑖𝑖𝑖𝑖𝑖 = K𝛿𝛿𝒑𝒑 = B𝑇𝑇𝛿𝛿𝒇𝒇𝑙𝑙 + δB𝑇𝑇𝒇𝒇𝑙𝑙  
= B𝑇𝑇K𝑙𝑙B𝛿𝛿𝒑𝒑 + K𝑔𝑔𝑔𝑔𝑔𝑔𝛿𝛿𝒑𝒑 (17) 

The result is the rotated local stiffness matrix plus the geometric stiffness matrix. 

K = B𝑇𝑇K𝑙𝑙B + K𝑔𝑔𝑔𝑔𝑔𝑔 (18) 

The derivation and details of the geometric stiffness matrix can be found in Crisfield [18]. Note that he 
uses a different coordinate system.  

3. Gravity 
This section describes how distributed loads such as gravity can be added to the co-rotational model. 
The method used assumes the load is distributed uniformly over the element. This can also be used for 
other distributed loads such as water current. 

3.1. Equivalent forces and moments 
The global forces at the first node are a function of the distributed force vector 𝑞𝑞, which contains the 
distributed forces in the global coordinate system. 

𝑭𝑭�𝑞𝑞 =
1
2
𝐿𝐿0𝒒𝒒 (19) 

The global forces at the second node are equal to the global forces at the first node. The moments at the 
first node are first calculated in the local coordinate system. The moment around the local x-axis is zero 
since the external forces have no influence on torsion. The moment around the local y-axis is due to all 
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forces in 𝒆𝒆3-direction. The minus sign is due to the right-hand-rule. The moment around the local z-axis 
is due to all forces in 𝒆𝒆2-direction. The moments at the first node are represented by: 

𝑴𝑴𝑙𝑙
𝑞𝑞 =

1
12

𝐿𝐿02 �
0

−𝒒𝒒𝑇𝑇𝒆𝒆3
𝒒𝒒𝑇𝑇𝒆𝒆2

�. (20) 

These moments can be rotated to the global coordinate system using element triad E from (3). 

𝑴𝑴𝑞𝑞 = E𝑴𝑴𝑙𝑙
𝑞𝑞 (21) 

The moments at the second node are minus the moments at the first node. Now the element force vector 
due to distributed forces becomes as follows: 

𝑭𝑭𝑞𝑞 = �
𝑭𝑭�𝑞𝑞
𝑴𝑴𝑞𝑞

𝑭𝑭�𝑞𝑞
−𝑴𝑴𝑞𝑞

� (22) 

3.2. Consistent tangent stiffness 
Since these forces are a function of the displacements, a tangent stiffness matrix needs to be derived in 
order to maintain quadratic convergence using the Newton-Raphson method. This matrix is derived by 
taking the variation of 𝑭𝑭𝑞𝑞. The variation of the forces at each node 𝑭𝑭�𝑞𝑞 is zero since 𝛿𝛿𝒒𝒒 = 0. Therefore 
the first three rows and rows 7-9 of the stiffness matrix are zero. The variation of 𝑴𝑴𝑞𝑞 is calculated as 
follows. 

𝛿𝛿𝑴𝑴𝑞𝑞 = 𝛿𝛿E𝑴𝑴𝑙𝑙
𝑞𝑞 + E𝛿𝛿𝑴𝑴𝑙𝑙

𝑞𝑞 (23) 

This yields the following contribution to the stiffness matrix: 

K𝑞𝑞 = �

0
K𝑠𝑠𝑠𝑠𝑠𝑠

0
−K𝑠𝑠𝑠𝑠𝑠𝑠

�. (24) 

Note that 0 on the first and third row represents a 3x12 zero matrix. The matrix 𝐾𝐾𝑞𝑞 has size 12x12. K𝑠𝑠𝑠𝑠𝑠𝑠 
is given by the following 3x12 matrix. 

K𝑠𝑠𝑠𝑠𝑠𝑠 =
1

12
𝐿𝐿02�−𝒒𝒒𝑇𝑇𝒆𝒆3Q(𝒓𝒓2) + 𝒒𝒒𝑇𝑇𝒆𝒆2Q(𝒓𝒓3) − 𝒆𝒆2𝒒𝒒𝑇𝑇Q(𝒓𝒓3) + 𝒆𝒆3𝒒𝒒𝑇𝑇Q(𝒓𝒓2)� (25) 

Here Q(𝒓𝒓𝑖𝑖) is from (11). 

4. Buoyancy 
The treatment of buoyancy forces is based on Yazdchi [19]. In his work the buoyancy forces are directly 
related to the finite element method. Yazdchi divides the distributed loads in three sections. First the 
forces due to distributed pressure, second the forces due to curvature of the pipe and lastly the forces 
due to capped ends. 

4.1. Distributed pressure 
The forces due to distributed pressure can be calculated as follows. On a horizontal pipe section the 
distributed force in N/m is  
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𝑞𝑞𝑏𝑏 = (𝐴𝐴0𝜌𝜌𝑤𝑤 − 𝐴𝐴𝑖𝑖𝜌𝜌𝑖𝑖)𝑔𝑔. (26) 

Here 𝐴𝐴0 is the outer section area of the pipe, 𝐴𝐴𝑖𝑖 is the inner section area of the pipe, 𝜌𝜌𝑤𝑤 is the density of 
the sea water, 𝜌𝜌𝑖𝑖 is the density of the fluid in the pipe and 𝑔𝑔 is the standard acceleration due to gravity. 

This equation can be found by integrating the pressure over the surface area of the pipe. The result 
is determined by the pressure difference in the water. However if the pipe is not horizontal, the pressure 
difference between top and bottom of the pipe is smaller. Therefore the factor 𝒆𝒆𝑛𝑛𝑇𝑇𝒌𝒌 is added. 

𝑞𝑞�𝑏𝑏 = 𝑞𝑞𝑏𝑏𝒆𝒆𝑛𝑛𝑇𝑇𝒌𝒌 (27) 

Here 𝒌𝒌 is a unit normal in the global z-direction. 𝒆𝒆𝑛𝑛 is a unit normal defined by 𝒌𝒌 and 𝒆𝒆1, which is the 
unit normal in the direction of the axis of the pipe. The derivation of 𝒆𝒆𝑛𝑛 can be found in [19]. 

If an element is only partially submerged, the forces are distributed equivalently over both nodes. 
This is done by introducing factors 𝑘𝑘𝐴𝐴 and 𝑘𝑘𝐵𝐵. If the pipe is completely submerged, 𝑘𝑘𝐴𝐴 and 𝑘𝑘𝐵𝐵 are 1/2. 
If only the first node (node A) is submerged, the parameters 𝑘𝑘 are determined from the position of the 
first and second node with respect to the water line. These distances ℎ𝐴𝐴 and ℎ𝐵𝐵 are positive when the 
node is submerged and negative when the node is above water. 

𝑘𝑘𝐴𝐴 = ℎ� − 𝑘𝑘𝐵𝐵  
𝑘𝑘𝐵𝐵 = 1/2ℎ�2 (28) 

Here ℎ� is calculated by 

ℎ� =
ℎ𝐴𝐴

ℎ𝐴𝐴 − ℎ𝐵𝐵
 (29) 

Up to here the buoyancy is identical to [19]. However Yazdchi neglects all equivalent moments. These 
are presented here. 

The moments are also distributed equivalently using factors ℎ𝐴𝐴𝐴𝐴 and ℎ𝐵𝐵𝐵𝐵. If the element is 
completely submerged, these terms are equal to 1/12 and −1/12 respectively. In order to find the size 
of the factors when the element is partly submerged, the following steps are taken.  

If only the first node is submerged, the moment at the first node can be calculated using  

𝑀𝑀𝐴𝐴 = � 𝑞𝑞
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1

𝑎𝑎

0
𝑑𝑑𝑑𝑑. (30) 

Here 𝑎𝑎 is the distance between the first node and the water surface. The local displacement 𝑤𝑤 within the 
element is determined by a qubic Hermite interpolation function.  

By solving this integral factor 𝑘𝑘𝐴𝐴𝐴𝐴 is found. The same can be done for the moment at the second 
node to find 𝑘𝑘𝐵𝐵𝐵𝐵.  

𝑘𝑘𝐴𝐴𝐴𝐴 =
1
4
ℎ�4 −

2
3
ℎ�3 +

1
2
ℎ�2 

𝑘𝑘𝐵𝐵𝐵𝐵 =
1
4
ℎ�4 −

1
3
ℎ�3 

(31) 

The equivalent nodal forces can now be found. 
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𝑭𝑭1𝑏𝑏 = 𝑞𝑞�𝑏𝑏

⎣
⎢
⎢
⎡

𝑘𝑘𝐴𝐴𝐿𝐿𝒆𝒆𝑛𝑛
𝑘𝑘𝐴𝐴𝐴𝐴𝐿𝐿2(𝒆𝒆1 × 𝒆𝒆𝑛𝑛)

𝑘𝑘𝐵𝐵𝐿𝐿𝒆𝒆𝑛𝑛
𝑘𝑘𝐵𝐵𝐵𝐵𝐿𝐿2(𝒆𝒆1 × 𝒆𝒆𝑛𝑛)⎦

⎥
⎥
⎤
 (32) 

Here 𝒆𝒆𝑛𝑛 is the direction of the equivalent forces and (𝒆𝒆1 × 𝒆𝒆𝑛𝑛) is the direction of the equivalent 
moments. 

4.2. Curvature effects 
The forces due to curvature effects are also implemented as given by Yazdchi. Note that he uses a 
different coordinate system. 

𝑭𝑭2𝑏𝑏 = 𝑞𝑞𝑏𝑏 �

ℎ𝐴𝐴 tan𝜃𝜃1 𝒆𝒆3 − ℎ𝐴𝐴 tan𝜙𝜙1 𝒆𝒆2
𝟎𝟎

−ℎ𝐵𝐵 tan𝜃𝜃2 𝒆𝒆3 + ℎ𝐵𝐵 tan𝜙𝜙2 𝒆𝒆2
𝟎𝟎

� (33) 

The third row is the negative of the first row because of the direction of rotation at the second node. 
Note that the force 𝑭𝑭2𝑏𝑏 is dependent on the water depth. The force is only applied on submerged nodes. 

4.3. Capped ends 
Thirdly Yazdchi also gives a buoyancy term due to capped ends. This term is applied to an end of the 
pipe. 

𝑭𝑭2𝑏𝑏 = 𝑞𝑞𝑏𝑏 �

ℎ𝐴𝐴𝒆𝒆1
𝟎𝟎

−ℎ𝐵𝐵𝒆𝒆1
𝟎𝟎

� (34) 

 

5. Hydrodynamic forces 
Hydrodynamic forces are calculated using Morison's equation [20]. The following equation is Morison's 
equation for a moving pipe in moving water.  

𝒒𝒒𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   =
1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝐷𝐷𝒅̇𝒅𝑟𝑟𝑟𝑟�𝒅̇𝒅𝑟𝑟𝑟𝑟�  + 𝜌𝜌𝐶𝐶𝑎𝑎

𝜋𝜋
4
𝐷𝐷2𝒅̈𝒅𝑟𝑟𝑟𝑟 + 𝜌𝜌 

𝜋𝜋
4
𝐷𝐷2𝒅̈𝒅𝑤𝑤𝑤𝑤  (35) 

Here 𝜌𝜌 is the density of the water, 𝐶𝐶𝑑𝑑 is the drag coeficient, D is the pipe diameter, 𝒅̇𝒅𝑟𝑟𝑟𝑟 and 𝒅̈𝒅𝑟𝑟𝑟𝑟 are the 
relative velocity and relative acceleration in normal direction of the pipe. 𝐶𝐶𝑎𝑎 is the added mass 
coefficient. 

The first term of (35) is the drag force, the second term is the added mass force. The last term is due 
to the pressure gradient, called the Froude-Krylov force. This force is a function of the acceleration of 
the water in normal direction 𝒅̈𝒅𝑤𝑤𝑤𝑤. 

The relative velocity is calculated from the difference between the water velocity and the pipe 
velocity. The same can be done for the relative acceleration.  

𝒅̇𝒅𝑟𝑟 = 𝒅̇𝒅𝑤𝑤 − 𝒅̇𝒅 
𝒅̈𝒅𝑟𝑟 = 𝒅̈𝒅𝑤𝑤 − 𝒅̈𝒅 (36) 
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The relative velocity in the normal direction of the pipe is calculated by subtracting the tangential 
relative velocity from the relative velocity. Again the same can be done for the relative normal 
acceleration. 

𝒅̇𝒅𝑟𝑟𝑟𝑟 = 𝒅̇𝒅𝑟𝑟 − 𝒅̇𝒅𝑟𝑟𝑇𝑇𝒆𝒆1𝒆𝒆1 
𝒅̈𝒅𝑟𝑟𝑟𝑟 = 𝒅̈𝒅𝑟𝑟𝑟𝑟 − 𝒅̈𝒅𝑟𝑟𝑇𝑇𝒆𝒆1𝒆𝒆1 (37) 

The velocities and acceleration of the pipe are determined by the HHT-α time integration method. The 
velocities and acceleration of the water are determined by the Airy wave theory. 

6. Results 
The numerical model formed from the equations described in this paper is implemented in C++ using 
the FeaTure framework for finite element codes [25]. This section shows static and dynamic results from 
several examples. 

6.1. Static: Buoyancy 
To validate the buoyancy forces, the reaction forces of three examples are compared to analytical results. 
The analytic results are obtained using Archimedes Law. 

𝐹𝐹 =  𝐴𝐴oρ𝑤𝑤𝑔𝑔𝑔𝑔 (38) 

Here 𝐴𝐴𝑜𝑜𝐿𝐿 is the volume of the pipe and 𝜌𝜌𝑤𝑤 is the density of the water. 
 

 
Figure 2. Pipe inclined at 𝑥𝑥 = 0 and deformed to a circle using prescribed deformations 

Table 1. Buoyancy forces [N] 

Example Analytical Numerical 
Vertical 315.89 315.89 
Horizontal 157.95 157.95 
Circle 3158.9 3158.9 

 
In the three buoyancy examples the outer diameter is set to 𝑑𝑑 = 0.2 m. The density of the water is 

set to 𝜌𝜌𝑤𝑤 = 1025 kg/m3. The first example is a vertical pipe of length 𝐿𝐿 = 1 m inclined at the water 
surface. Numerically the buoyancy force is determined by the capped end term. The second example is 
a horizontal pipe of length 𝐿𝐿 = 1 m supported at both ends. The third example is a pipe inclined at 𝑥𝑥 =
0 and deformed to a circle using prescribed deformations. This example is depicted in Figure 2. The 
blue area is the water surface area.  

In Table 1 the analytical and numerical solutions of the three examples are given. It can be seen that 
the numerical solutions are equal to the analytical solutions. 
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In the example with the horizontal pipe, the pipe is slightly curved due to the buoyancy forces. Thus 
curvature forces are acting on the pipe. The curvature forces are a function of the water depth. Thus if 
the pipe is moved downward, the curvature forces become larger and the total buoyancy force becomes 
smaller. 

6.2. Static: Convergence 
In the next example a pipe with a diameter of 457 mm and wall thickness 31 mm is considered. Other 
properties can be found in Table 2. This pipe placed 10 m above water. A distributed load of -3000 N/m 
is applied to the beam in the first two steps. In the third step the buoyancy forces are added. The result 
is shown in Figure 3. The blue area in this figure is the water surface. 

Table 2. Beam properties 

Parameter Size 
Length 100 m 
E-modulus 207 GPA 
Poisson ration 0.3 
Density pipe 7700 kg/m3 
Density water 1025 kg/m3 

 
 

 
 

Figure 3. Deformed pipe resulting from three 
load steps; two steps of distributed load and one 
step of buoyancy 

Figure 4. Convergence using displacement based 
error 

The convergence using the tangential stiffness matrix is depicted in Figure 4. As expected for the 
Newton-Raphson iteration method, this convergence is quadratic. Furthermore the convergence is 
checked using a numerical stiffness matrix instead of the tangential stiffness matrix. No difference in 
convergence was observed. 

6.3. Dynamic: Small deformations by force 
In this example a cantilever beam subject to small deformations is considered. The length of this beam 
is 𝐿𝐿 = 100 m and it is divided in 10 elements. Width and height of the beam are 0.1 m. Only in the first 
time step a load of 𝐹𝐹 = 1000 N is applied at the free end of the beam. This example is solved using the 
HHT-α method with 𝛼𝛼 = 0. This is equal to the Newmark-β method with parameters 𝛼𝛼 = 1/2 and 𝛽𝛽 =
1/4. The results of the y-displacement of the end of the beam is shown in Figure 5.  
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Table 3. Eigenfreciencies [Hz] of the cantilever beam 

n Analytical Numerical 

1 0.00838 0.00834 
2 0.0525 0.0525 
3 0.147 0.147 
4 0.288 0.288 
5 0.476 0.473 
6 0.711 0.703 

 

 
Figure 5. Response of beam tip to impulse load 

In Table 3 the eigenfrequencies of the result shown in Figure 5 are compared to the analytically 
calculated eigenfrequencies of a cantilever beam. It is observed that these eigenfrequencies correspond 
very well to the numerical results. 

6.4. Dynamic: Numerical damping 
In this section the effect of the numerical damping in the HHT-α method is checked using an example 
problem. In this problem a cantilever beam is loaded with two equally large moments at the tip. The 
first moment is around the y-axis, the second moment is around the z-axis. This is depicted in Figure 6 

The diameter of the pipe is 559 mm (22 inch) and the wall thickness is 21 mm. The beam is divided 
into 10 elements. Other pipe properties are given in Table 2. Using a time step of Δ𝑡𝑡 = 0.1 s the 
displacements are calculated until total time of 60 s is reached. 

 
Figure 6. Example problem numerical damping 

Two cases are considered. The first case is without numerical damping, thus 𝛼𝛼 = 0. The second case 
is with 𝛼𝛼 = 0.03. The total displacement of the tip of the pipe is calculated. The Fourier transform of 
the total displacement is depicted in Figure 7 and Figure 8. In these figures it can be observed that the 
HHT-α method shows numerical dissipation for the 3rd eigenfrequency, around 1 Hz, and higher. The 
calculation time and required number of iterations to converge is depicted in Table 4. 
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The HHT-α method is not unconditionally stable for nonlinear systems. This is observed by 
increasing the time period calculated. When using no numerical damping the system becomes unstable 
after approximately 300s. This problem is solved by including the numerical damping by setting 𝛼𝛼 =
0.03. 

 

 
 

Figure 7. Fourier transform of example without 
numerical damping 

Figure 8. Fourier transform of example 
including numerical damping 

 

Table  4. Number of iterations and calculation time of HHT method 

   α Iterations per 
step 

Calculation 
time 

0 3-4 2.3 s 

0.03 2-3 1.7 s 
 

6.5. Dynamic: Hydrodynamic forces 
A massless pipe with a length of 100 meters is placed horizontally 100 meter below the water surface. 
The pipe has a diameter of 0.2 m and a wall thickness of 50 mm. The mesh consists of 10 elements and 
the water density is 1025 kg/m3. At time 𝑡𝑡 = 0 the pipe is horizontal and the displacements are zero. 
Figure 9 shows the result of the dynamic calculation without Morison forces. Figure 10 shows the results 
including Morison forces. It can be seen that the displacements 𝑢𝑢 and 𝑤𝑤 in x- and z-direction damp out 
quickly. 
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6.6. Dynamic: Pipe response to vessel movement 
A pipe with diameter of 457 mm (18 inch) with a wall thickness of 31 mm is considered. The pipe has 
a length of 200m. A section of length 100 m is supported by the pipe laying vessel. The centre of motion 
of the vessel is placed at the middle of the supported section. The unsupported part of the pipe is divided 
in 10 elements. Other pipe properties can be found in Table 2. 

A distributed load of -3000 N/m is exerted on the pipe in vertical direction. When the pipe is below 
the water surface at 𝑧𝑧 = 0 buoyancy forces act on the pipe. The static solution of this example can be 
found in Figure 11. 

The movement of the centre of motion of the vessel is a response to the wave by Response Amplitude 
Operators (RAO) [26][27]. The wave motion is determined by a Pierson-Moskowitz spectrum [28] 
based on significant wave height Hs and mean zero crossing up period Tz [29]. This spectrum represents 
a fully developed sea. Figure 12 shows the response of the vessel’s centre of motion to an irregular wave 
with significant wave height 𝐻𝐻𝑠𝑠 = 3 m and mean zero crossing up period 𝑇𝑇𝑧𝑧 = 7 s. Figure 13 shows the 
displacement of the free end of the pipe with respect to the static solution. 

 

  

Figure 11. Static solution of pipe partly supported 
by vessel 

Figure 12. Displacement of vessel's centre 
of motion 

 

  

Figure 9. Displacement of the tip of a massless 
pipe under buoyancy load without Morison forces 

Figure 10. Displacement of the tip of a massless 
pipe under buoyancy load including Morison 
forces 
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Figure 13. Displacement with respect to static solution 
of free pipe end 

7. Conclusion 
The nonlinear co-rotational finite element model presented in this paper shows good results for 
buoyancy forces and gravity forces. Furthermore, the static convergence is quadratic due to the Newton-
Raphson method in combination with a consistent tangent stiffness matrix, resulting in an efficient 
calculation. 

The implicit HHT-α method used for numerical time integration works well with buoyancy load and 
gravity. Numerical damping prevents instability problems. Furthermore, the Morison forces result in 
damping in the system.  
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