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Abstract. This study addresses numerical analysis of the installation of a tripod foundation using 
a heavy lift vessel (HLV). Limiting sea states are firstly predicted in the frequency domain based 
on crane tip vertical motions using linear transfer functions. Then, numerical modelling and 
simulations are carried out in the time domain to analyse the coupled dynamic system taking into 
consideration of the nonlinearities of the system. In time-domain analysis, two lifting phases are 
brought into focus, i.e., the lift-off and the lowering phases. For the lift-off phase, two scenarios 
are considered, i.e., lift-off from the own deck of the HLV and lift-off from a transport barge. 
Moreover, comparative studies using two types of installation vessels, a floating vessel and a 
Jack-up, are investigated for the lowering process. Critical responses including the motions of 
the tripod and the lift wire tensions are presented and compared under various environmental 
and loading conditions. 

1.  Introduction 
The installation of offshore wind farms continues to increase, which is driven by many factors. The 
potential energy produced from wind is proportional to the cube of the wind speed. As a result, only a 
small increment of the wind speed can produce a significantly larger amount of electricity. Compared 
to the wind plants on land, higher wind speed and low turbulence intensity offshore can result in up to 
50% higher energy production [1]. Since more wind energy can be captured offshore, together with 
other positive factors, such as technology transfer from oil and gas industry, offshore wind industry has 
boomed around the world, especially in European countries around the North Sea and the Baltic Sea. It 
is predicted that offshore wind will provide a growing share and reach one third all the wind generated 
energy by 2050 [2]. 

Marine lifting operations play a key role in the installation of offshore wind turbines (OWTs) and 
their bottom-fixed foundations. The installation of OWT monopile support structures has been 
investigated in some research work through numerical modelling and analysis [3]. The lifting operations 
are typically carried out by a floating or a jack-up crane vessel. Compared to the jack-up vessel which 
stands still on the sea bed, the motions of the floating vessel would affect motion responses of the lifted 
object which is a tripod foundation in the present study. However, floating vessels with onboard heavy 
cranes are more efficient than the jack-up for mass installations of a wind farm, thanks to their fast transit 
among the locations of the turbines. 

In this paper, lifting operations of a tripod foundation using a heavy lift vessel (HLV), are studied. 
To author’s knowledge, there are limited publications available in open literature, which address the 



2

1234567890

First Conference of Computational Methods in Offshore Technology (COTech2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 276 (2017) 012012 doi:10.1088/1757-899X/276/1/012012

 
 
 
 
 
 

numerical simulation of a tripod foundation.  Investigation is first carried out in the frequency domain. 
Based on the linear wave theory and linear response process [4], wave induced rigid body motions of 
the vessel alone are calculated. Concerning critical response parameters, limiting sea states are predicted 
based on probabilistic acceptance criteria [5]. Then, time domain simulations are performed for the 
coupled dynamic lifting system of the HLV and the tripod. The predicted limiting sea states using the 
frequency domain method are cross checked in the time domain by running stationary simulations. 
Attentions are consequently devoted to two time-varying non-stationary processes, i.e., the lowering 
phase and the lift-off phase. Potential critical events, such as snap load in the lift wire, collision with the 
lifting vessel or even re-hit during the lift-off phase, are studied. Installation system and theoretical 
background are introduced first, ahead of the limiting sea states prediction in the frequency domain. 
Then, clarifications on the numerical modelling are presented prior to the analysis and discussion of the 
time domain simulation results. In the end, conclusions and future work are listed. 

2.  Installation system 
The weight of a tripod foundation which depends on the capacity of the wind turbine and the water 
depth, can reach hundreds of tons. In this study, a tripod weighing 920 tons [6] is used and the main 
parameters are shown in Table 1. Due to the heavy weight and the bulky size of the tripod foundation, 
a heavy lift floating vessel is chosen for the installation. The main dimensions of the HLV [7] can also 
be found in Table 1. 

Table 1. Main parameters of the HLV and the tripod foundation. 

Vessel (HLV)   Tripod 
Item Value   Item Value 
Length overall [m] 183  Total mass [tons] 920 
Breadth [m]  47  Total height [m] 63 

Moulded depth [m] 18.2 
 

Outer diameter (central column) [m] 5.7  

Operational draught [m] 10.2 
 

Outer diameter (braces) [m] 1.2 - 3.15   
The onboard crane is capable to perform lifting operation up to 5000 tons with maximum 100 m 

lifting height from its freeboard deck. The positioning system of the HLV allows for lifting operations 
in close proximity to other structures, such as lift-off operation of the tripod from a transport barge. For 
the lifting operation, the position of the crane tip plays a crucial role for the limiting sea states prediction 
since the crane tip motions are considered as critical responses. Moreover, the motions of the crane tip 
affect the response of the coupled dynamic lifting system. Hence, the crane tip position should be 
decided based on the general arrangement of the HLV and the technical specification of the onboard 
crane.  

The global coordinate system is a right-handed coordinate system with the X-axis pointing towards 
the bow, the Y-axis towards the port side and the Z-axis pointing upwards. The origin of the global 
coordinate system is located on the ship’s centerline, at the cross of the midship section and the still 
water level during the lifting operation. In addition, the body fixed coordinate system (moving with the 
body) of the HLV coincides with the global coordinate system when the HLV is at rest. In this study, 
the coordinates of the crane tip are chosen as 𝑥𝑥𝑝𝑝 = −81.7 𝑚𝑚,  𝑦𝑦𝑝𝑝 = 53.5𝑚𝑚, 𝑧𝑧𝑝𝑝 = 88 𝑚𝑚, relative to the 
origin of the body fixed coordinate system of the HLV. Moreover, the origin of the body-fixed 
coordinate of the tripod in the numerical model is set on the axis of its central column, at the point 18m 
beneath the top of the column (45 m above the lower tip). Figure 1 shows the schematic lifting 
arrangement of the tripod in the global coordinate system. 

In the present study, the offshore site North Sea Centre (Site No. 15) [8] is chosen as a reference 
installation site. Typical wave conditions from this site would be used as input for the analysis. 
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Figure 1. Lifting arrangement of the tripod in the global coordinate system. 

3.  Theoretical background 

3.1.  Motions and responses 
For the crane tip with the coordinates (𝑥𝑥𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝) in the body fixed coordinate system of the HLV, the 
motions of the point can be expressed in the following equation [9]: 

 𝒔𝒔 = �𝜂𝜂1 + zp𝜂𝜂5 − yp𝜂𝜂6�𝒊𝒊 + �𝜂𝜂2 − zp𝜂𝜂4 + 𝑥𝑥p𝜂𝜂6�𝒋𝒋 + (𝜂𝜂3 + yp𝜂𝜂4 − xp𝜂𝜂5)𝒌𝒌 (1) 

where, 𝒊𝒊, 𝒋𝒋 and 𝒌𝒌 are the unit vectors and 𝜂𝜂1 through 𝜂𝜂6 are the rigid body motions of the vessel in surge, 
sway, heave, roll, pitch and yaw respectively. The crane tip vertical motion is thus formulated as: 

 𝒔𝒔𝑣𝑣 = 𝜂𝜂3 + yp𝜂𝜂4 − xp𝜂𝜂5 (2) 

besides the heave motion 𝜂𝜂3, the vertical motion of the crane tip is also affected by the vessel roll 𝜂𝜂4 
and the vessel pitch 𝜂𝜂5. In addition, the positions of the crane tip also affect the vertical motion.  

In general, transfer function encompasses both the amplitude scaling and phase shift of the response 
relative to the wave component. For each degree of freedom, the function can be expressed in complex: 

 𝐻𝐻𝑖𝑖(𝜔𝜔) = 𝐴𝐴𝑖𝑖(𝜔𝜔)exp (𝑖𝑖𝜑𝜑𝑖𝑖(𝜔𝜔)) (3)  

where, 𝐻𝐻𝑖𝑖(𝜔𝜔), the transfer function in the i-th degree of freedom; 𝐴𝐴𝑖𝑖(𝜔𝜔), amplitude of the transfer 
function, also denoted as response amplitude operator (RAO) which gives the ratio between the response 
amplitude to the wave amplitude; 𝜑𝜑𝑖𝑖(𝜔𝜔), phase angle of the transfer function; 𝜔𝜔, angular frequency of 
interest. 

Given the transfer functions of the vessel, the wave induced rigid body motions at the crane tip can 
be calculated through motions superposition as in equation (1). For crane tip vertical motion, it can be 
shown as: 

𝒔𝒔𝑣𝑣 = 𝜂𝜂3 + yp𝜂𝜂4 − xp𝜂𝜂5 = 𝐻𝐻3(𝜔𝜔) ∙  𝜁𝜁𝑎𝑎 + yp𝐻𝐻4(𝜔𝜔) ∙  𝜁𝜁𝑎𝑎 − xp𝐻𝐻5(𝜔𝜔) ∙  𝜁𝜁𝑎𝑎 

 = �𝐻𝐻3(𝜔𝜔) + yp𝐻𝐻4(𝜔𝜔) − xp𝐻𝐻5(𝜔𝜔)� ∙  𝜁𝜁𝑎𝑎 (4) 

where, 𝜁𝜁𝑎𝑎 is the wave amplitude while the part, 𝐻𝐻3(𝜔𝜔) + yp𝐻𝐻4(𝜔𝜔) − xp𝐻𝐻5(𝜔𝜔), is combined transfer 
function for the crane tip vertical motion, denoted as 𝐻𝐻𝑣𝑣(𝜔𝜔). By substituting equation (3), it can be 
further expressed as: 

𝐻𝐻𝑣𝑣(𝜔𝜔) = 𝐻𝐻3(𝜔𝜔) + yp𝐻𝐻4(𝜔𝜔)− xp𝐻𝐻5(𝜔𝜔) = 𝐴𝐴3(𝜔𝜔) exp�𝑖𝑖𝜑𝜑3(𝜔𝜔)� + 𝑦𝑦𝑝𝑝 ∙ 𝐴𝐴4(𝜔𝜔) exp�𝑖𝑖𝜑𝜑4(𝜔𝜔)� 

 −𝑥𝑥𝑝𝑝 ∙ 𝐴𝐴5(𝜔𝜔)exp (𝑖𝑖𝜑𝜑5(𝜔𝜔)) (5) 

The calculation of the crane tip vertical motion can be further conducted, ended in the form of 
response spectrum as in equation (6) and spectral moment as in equation (7). 
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 SR(𝜔𝜔) = |𝐻𝐻𝑣𝑣(𝜔𝜔)|2𝑆𝑆(𝜔𝜔) = [𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)]2𝑆𝑆(𝜔𝜔) (6) 

 𝑚𝑚𝑛𝑛 = ∫ 𝜔𝜔𝑛𝑛𝑆𝑆𝑅𝑅(𝜔𝜔)∞
0 𝑑𝑑𝑑𝑑 (7) 

where, 𝑅𝑅𝑅𝑅𝑅𝑅  is the absolute value (amplitude) of the combined transfer function, 𝑆𝑆𝑅𝑅 is the response 
spectrum, S is the wave spectrum, ω is the wave angular frequency and 𝑚𝑚𝑛𝑛 is the response spectral 
moment of general order n. 

Response variance 𝜎𝜎𝑅𝑅2, equal to the zeroth response spectral moment, can be expressed as: 

 𝜎𝜎𝑅𝑅2 = 𝑚𝑚0 = ∫ 𝑆𝑆𝑅𝑅(𝜔𝜔)∞
0 𝑑𝑑𝑑𝑑 (8) 

Average zero-up-crossing period for the response, 𝑇𝑇𝑧𝑧, can then be estimated by: 

 𝑇𝑇𝑧𝑧 = 2𝜋𝜋�
𝑚𝑚0
𝑚𝑚2

 (9) 

Consequently, number of response cycles in 1-hour, 𝑛𝑛1ℎ, can be formulated as: 

 𝑛𝑛1ℎ = 𝑁𝑁 = 3600
𝑇𝑇𝑧𝑧

   (10) 

3.2.  Limiting sea states based on the critical crane tip motion 
Since lifting operations take place in relatively calm weather, the motions of the crane vessel can be 
computed from linear wave theory and the motions can be assumed to be Gaussian distributed [10] and 
the global maxima (largest maximum between adjacent zero-up-crossings) follows a Rayleigh 
distribution [11]. The distribution of 1-hour global response maxima can be expressed as equation (11), 
by assuming the global maxima in 1-hour as statistically independent and identically distributed. 

 𝐹𝐹(𝑋𝑋) = �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�𝑋𝑋
𝜎𝜎
�
2
��
𝑛𝑛1ℎ

 (11) 

where,  𝜎𝜎 is the standard deviation of the response. 
The maximum vertical motion of the crane tip in one hour (𝑍𝑍1ℎ) is chosen as the critical parameter 

for the lifting operation. Based on limiting criteria with the limiting value 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙 , the probability of 
exceedance (with 𝑍𝑍1ℎ > 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙), can be shown as: 

 𝑃𝑃[𝑍𝑍1ℎ > 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙] = 1 − �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�𝑍𝑍lim
𝜎𝜎𝑧𝑧
�
2
��
𝑁𝑁

 (12) 

where, 𝜎𝜎𝑧𝑧  is the standard deviation of crane tip vertical motion. The probability of exceedance is a 
measurement of risk taken for the marine operation. Low probability of exceedance is preferred for 
relatively safe operation. In practice, the acceptable probability of exceedance (acceptance criteria) 
depends on the cost and consequences due to the failure. Given the acceptance criteria (allowable 
probability of exceeding the limiting value), 𝑞𝑞1ℎ, the marine operation can only be conducted satisfying 
the condition as in equation (13). 

 1 − �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�𝑍𝑍lim
𝜎𝜎𝑧𝑧
�
2
��
𝑁𝑁

≤ 𝑞𝑞1ℎ (13) 

Equation (13) can be transformed as: 

 𝜎𝜎𝑧𝑧 ≤
𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙

�−2 ln[1−(1−𝑞𝑞1ℎ)1/𝑁𝑁]
 (14) 

 Since the motion standard deviation is a function of the sea state (𝐻𝐻𝑠𝑠 and  𝑇𝑇𝑝𝑝), the limiting 𝐻𝐻𝑠𝑠 
(significant wave height) and 𝑇𝑇𝑝𝑝 (spectral peak period), can be found as: 
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 𝜎𝜎𝑧𝑧,𝑙𝑙𝑙𝑙𝑙𝑙�𝐻𝐻𝑠𝑠,𝑇𝑇𝑝𝑝� = 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙
�−2 ln[1−(1−𝑞𝑞1ℎ)1/𝑁𝑁]

 (15) 

4.  Prediction of limiting sea states in the frequency domain 

4.1.  RAOs of the crane tip vertical motion 
Based on the motion transfer functions of the vessel, the RAOs of the crane tip vertical motion can be 
calculated by referring to equation (5) and they are presented in Figure 2.  

It can be found from the figure that the RAO values vary significantly with the wave directions and 
the lowest occurs in the head sea (180deg). Besides, the curves in various wave directions peak at the 
frequency around 0.4 rad/s which is close to the natural frequency of the vessel roll. 

 
Figure 2. RAOs of the crane tip vertical motion. 

4.2.  Response spectrum of crane tip vertical motion 
The response spectrum of the crane tip vertical motion was calculated from equation (6) using long 
crested JONSWAP wave spectrum for the reference site. Two wave conditions (𝐻𝐻𝑠𝑠 = 1.25𝑚𝑚 and 𝐻𝐻𝑠𝑠 =
2.5𝑚𝑚 at 𝑇𝑇𝑃𝑃 = 7𝑠𝑠) with relatively high probability of occurrence according to the 10-year scatter diagram 
[12], were selected, together with the third one (𝐻𝐻𝑠𝑠 = 2.5𝑚𝑚 and 𝑇𝑇𝑃𝑃 = 16𝑠𝑠) for comparison. In addition 
to the chosen position for the crane tip, one virtual position (Position 2, closer to the center of gravity of 
the HLV in X direction) is also used to study the influence from the varied crane tip positions. 
Coordinates of the crane tip positions are shown in Table 2. Although the assumed Position 2 is 
practically impossible to reach due to the limited working radius of the onboard crane, the comparative 
study illustrates the significant influences of crane tip location on the crane tip motions.  

Table 2. Coordinates of the crane tip during installation. 

Coordinates of crane tip X Y Z 
Position 1 (the chosen) -81.7 53.5 88 
Position 2 (the virtual) -10.5 53.5 88 

 Figure 3 presents the response spectra of the crane tip vertical motion under the three wave 
conditions. Huge differences can be observed using different crane tip positions as shown in the Figure 
3 (a) and (b). The peak values of the response spectra in the wave direction of 105deg and 120deg using 
Position 1 is remarkably larger than those using Position 2 which is much closer to the center of gravity 
(CoG) of the vessel. It demonstrates that the crane tip motions can be greatly mitigated by reasonably 
locating the crane tip toward mid-ship during installation operation. While, for the wave condition with 
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𝑇𝑇𝑝𝑝 = 16𝑠𝑠 as shown in Figure 3 (c), the differences using the two crane tip positions are minor. The peak 
values for both cases are extremely high due to resonance. The resonance occurs because the spectral 
peak period (16s) of the JONSWAP wave spectrum is close to the natural period of the roll motion of 
the HLV. Moreover, the HLV should better be oriented against the incoming wave (165deg or 180deg) 
during the operation to avoid large roll induced crane tip motions. 

 
Figure 3. Response spectra of crane tip vertical motion under three wave conditions. 

4.3.  Limiting sea states prediction based on the limited vertical motion of crane tip 
The limiting value of the crane tip vertical motion within one hour, 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙 in equation (12), is assumed to 
be 0.5m. Besides, the acceptable probability of exceedance, 𝑞𝑞1ℎ in equation (13), is set to be 0.05 with 
moderate safety allowance. Moreover, it is assumed that the heavy lift operation in this study cannot be 
carried out under wave conditions with 𝐻𝐻𝑠𝑠  more than 2.5m, which is believed reasonable for such 
operations. 

Figure 4 shows the predicted limiting sea states in different wave heading directions based on the 
crane tip Position 1. It can be found that the acceptable 𝐻𝐻𝑠𝑠 lowers down dramatically with increasing 𝑇𝑇𝑝𝑝 
from 6 s to 15 s.  Take the wave heading Dir=165 deg for example, sea states with 2.5m 𝐻𝐻𝑠𝑠 can be 
tolerated in short waves (e.g., 𝑇𝑇𝑝𝑝 = 6 𝑠𝑠), while the acceptable Hs is smaller than 0.5m in the waves with 
𝑇𝑇𝑝𝑝 > 10 𝑠𝑠. In addition, the limiting sea states depend strongly on the wave headings. It is obvious that 
the limiting sea state curve becomes lower and lower from the head sea (180deg) to the more oblique 
sea (from 165deg to 150deg). The lower limiting sea states in the oblique sea result from the larger crane 
tip responses (spectrum) as shown in Figure 3 due to the influence of vessel roll motions. Specifically, 
the allowable 𝐻𝐻𝑠𝑠 lowers down from around 1.8m in the wave direction 180deg to about 1.1m in the 
direction 150deg at 𝑇𝑇𝑝𝑝 = 7𝑠𝑠. It verifies the importance of the orientation of the vessel relative to the 
wave direction. 

Figure 5 shows the predicted limiting sea states with varying crane tip positions in the wave heading 
Dir = 165 deg. It is strikingly clear that much severer sea states can be tolerated using crane tip Position 
2. It echoes the previous analysis and the judgement that the motion response can be greatly mitigated 
by locating the crane tip toward mid-ship (closer to the CoG of the vessel).  
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Figure 4. Predicted limiting sea states using three 
wave headings. 

Figure 5. Predicted limiting sea states using two 
crane tip positions with wave heading Dir = 165° 

5.  Modelling of the coupled system 
Numerical modelling and simulation are carried out using the software SIMA SIMO developed by 
SINTEF Ocean. SIMO is a non-linear time domain simulation program used for the analysis of rigid 
body motions and multibody systems [13] [14]. Installation of offshore support structures can be 
generally divided into the phases, lift-off, lowering (through wave zone) and landing on seabed. This 
study focuses on two phases, the lowering and the lift-off. 

5.1.  General setup of the lifting system 
The lifting system mainly comprises of two rigid bodies, a floating vessel and a tripod foundation. 
Onboard the floating vessel, a rigidly connected crane has been modelled. The two rigid bodies are 
linked through the lift wire which extends from a winch on the crane to the top of the tripod via the crane 
(boom) tip. For simplicity, hook or sling wires are not modelled. Moreover, a fender coupling is 
modelled to hold the weight of tripod ahead of the onboard lift-off operation. Figure 6 shows the 
numerical model for the simulation of lowering process. 

 
Figure 6. Numerical model for the simulation of lowering process. 
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Figure 7. Numerical model for the simulation of lift-off from a barge. 

For the scenario of lift-off from a transport barge, three rigid bodies are involved. In this case, wire 
coupling would be applied between the HLV and the tripod while fender coupling would be placed 
between the tripod and the barge. Figure 7 shows the numerical model for the simulation of the lift-off 
from a barge. 

5.2.  Force model on the HLV 
The hydrodynamic forces on the vessel include the first order wave excitation forces, the mean wave 
drift forces and slowly varying forces.  Waves are considered as main factor, excluding wind or current 
forces. The mooring system are simplified by adding linear stiffness terms in surge, sway and yaw by 
assuming the natural period in the three DOFs equal to 70s which is assumed reasonable for the subject 
HLV. Then, the stiffness, 𝐾𝐾, could be obtained following the equation [15]: 

 𝐾𝐾𝑖𝑖𝑖𝑖 = �2𝜋𝜋
𝑇𝑇𝑖𝑖0
�
2
∙ (𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑖𝑖𝑖𝑖) , 𝑖𝑖 = 1,2,6 (16) 

where, 𝑇𝑇𝑖𝑖0 is the natural period for the 𝑖𝑖𝑡𝑡ℎ DOF and 𝑇𝑇𝑖𝑖0 = 70𝑠𝑠,  𝑚𝑚𝑖𝑖𝑖𝑖 and 𝐴𝐴𝑖𝑖𝑖𝑖 are the mass and potential 
added mass, respectively. 

Normally, water ballasting is performed in practice to counter the overturning moment from the lifted 
tripod. For simplicity, constant specified moment is introduced in the simulation of the lowering process. 
For the case lift-off from a barge, time dependent ballasting is applied, considering the complex relative 
motion between the two floating vessels.   

5.3.  Force model on the tripod 
For slender body with the ratio between its diameter and the wave length less than 0.2, Morison’s 
formula can be used to calculate the hydrodynamic forces. Member structures of the tripod can be 
modelled in slender element for the sea states concerned with 𝑇𝑇𝑝𝑝 in the range from 5s to 12s, after 
checking of the corresponding wave lengths. In the slender body approximation, effects of diffraction 
and radiation are considered insignificant. The normal force on a moving structure in waves using 
Morison’s formula is as follows, 

 fN(𝑡𝑡) = −𝜌𝜌𝐶𝐶𝐴𝐴𝐴𝐴𝑟̈𝑟 + 𝜌𝜌𝐶𝐶𝑀𝑀𝐴𝐴𝑣̇𝑣 + 1
2
𝜌𝜌𝐶𝐶𝐷𝐷𝐷𝐷(𝑣𝑣 − 𝑟̇𝑟)|𝑣𝑣 − 𝑟̇𝑟| (17) 

where, v and 𝑣̇𝑣 are fluid particle velocity and acceleration respectively; 𝑟̇𝑟 and 𝑟̈𝑟 are the sectional velocity 
and acceleration of the moving structure; D and A are the diameter and cross-section area of structure 
section; 𝐶𝐶𝑀𝑀, 𝐶𝐶𝐴𝐴 and 𝐶𝐶𝐷𝐷 are the mass, added mass and drag force coefficients respectively. 

𝐶𝐶𝐴𝐴 and 𝐶𝐶𝐷𝐷 are dependent on many parameters such as the Reynolds number (Re), the Keulegan- 
Carpenter number (𝐾𝐾𝐶𝐶 ) and the surface roughness ratio (Δ). Outer surface of the newly fabricated 
foundation can be assumed to be smooth. With Re in the magnitude of 106, combined with a small Kc 
number, the quadratic drag coefficient can be chosen as 𝐶𝐶𝐷𝐷 = 0.7 [7].  

For cylinders in unbounded fluid with a small 𝐾𝐾𝑐𝑐 , 𝐶𝐶𝐴𝐴  can be assumed to be independent of 𝐾𝐾𝐶𝐶 
number and equal to the theoretical value 𝐶𝐶𝐴𝐴 = 1.0 for both smooth and rough cylinders [16]. However, 
the tripod is made of bottomless tube structures with diameters in the order of meters. Following the 
lowering process, the bottomless hollow structure members will be flushed with sea water following the 
submergence. The water inside the hollow structure affects the hydrodynamic coefficients and excitation 
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force on the structure members. Referring to the study on monopile lifting operation [7], 𝐶𝐶𝑀𝑀 = 𝐶𝐶𝐴𝐴 = 1.8 
is applied for all the bottomless tube structures of the tripod. In addition, the slamming forces which can 
be calculated based on the change of the added mass with time and the relative velocity between the 
slender element and the wave particle motion, are omitted in the time domain simulations. 

5.4.  Mechanical couplings 

5.4.1.  Simple wire coupling. In the numerical model, the lift wire connecting the crane and the tripod is 
modelled as a simple wire coupling. The simple wire coupling is modelled as a linear spring according 
to [13]: 

 T = k ∙ ∆l (18) 

where T is the wire tension, K is effective axial stiffness and the ∆l is the wire elongation. The effective 
axial stiffness, K, is given by: 

 1
k

= l
EA

+ 1
𝑘𝑘0

 (19) 

where E is the modulus of elasticity, A is the cross-section area, 𝑙𝑙 is the un-stretched wire length and the 
1/𝑘𝑘0 is crane flexibility. Material damping is set to be 2% of the EA value [13]. Table 3 lists the main 
parameters of the simple wire coupling. 

Table 3. Main parameters of the simple wire coupling. 

Lift wire properties 
Flexibility [m/N]  Damping [Ns] EA [N] 
2.00E-09 1.58E+08 7.91E+09 

5.4.2.  Fender coupling. A fender is defined as a contact element between the tripod and the vessel for 
the simulation of the lift-off operation. It can give a compressive force normal to the defined sliding 
plane (freeboard deck of the vessel) and a friction force along the sliding plane. In the model, the fender 
induced normal force acts upwards to counter the weight of the tripod. As shown in the Table 4, the 
friction coefficients are chosen based on empirical data between steel and steel. The normal and shear 
stiffness are decided based on empirical assumption.  

Table 4. Main parameters of the fender coupling. 

Characteristics of the fender plate 
Friction coefficient Shear stiffness 

[N/m] 
Normal stiffness 
[N/m] 

Internal 
damping [Ns/m] Dynamic Static 

0.42 0.78 4.68E+07 6.00E+07 1.20E+06 
The compressive normal force can then be found by interpolation, from a specified relation between 

distance and force and from the specified internal damping [13]. Linear interpolation is applied for the 
relationship between the distance and the normal force and it is assumed reasonable to set the internal 
damping as 2% of the equivalent stiffness in the normal direction.  

6.  Time domain simulations 

6.1.  Simulation of stationary process 
The calculated limiting sea states in the frequency domain can only be treated as preliminary 
assessments since it is carried out based on the vertical crane tip motion from the decoupled HLV. Thus, 
the calculated limiting sea states in the frequency domain should better be verified by time-domain 
analysis. Table 5 shows the predicted limiting sea states from the frequency domain analysis, in the 
wave heading Dir=165deg, which are extracted from the results in Figure 4.  



10

1234567890

First Conference of Computational Methods in Offshore Technology (COTech2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 276 (2017) 012012 doi:10.1088/1757-899X/276/1/012012

 
 
 
 
 
 

Table 5. Predicted limiting sea states in the wave heading Dir=165deg. 

Predicted limiting sea states with serial number 
  1 2 3 4 5 6 
Tp [s] 5 6 7 8 9 10 
Hs [m] 2.5 2.5 1.3 0.9 0.6 0.4 

Stationary time-domain simulations for the predicted limiting sea states are conducted with the tripod 
located at two positions, one hanging in air with 13m clearance from the sea level and the other located 
at 5m above the sea bed (40m in draft). To account for the variability of the stochastic irregular wave 
conditions, 20 realizations (seeds) of 1-hour simulations for each sea state have been performed. Then, 
the 1-hour extreme crane tip vertical motions from different seeds are fitted into Gumbel distributions 
for further assessment. 

Figure 8 shows the 95% quantile of the crane tip extreme vertical motion from the fitted Gumbel 
distribution under the predicted limiting sea states (see Table 5).  This quantile corresponds to the 
acceptable probability of exceedance, 𝑞𝑞1ℎ = 0.05 used in the frequency domain analysis. It can be 
observed that the simulation results are generally not in line with the predictions by the frequency 
domain analysis, especially in the case with tripod submerged. For the seas states 1 to 3 with low peak 
period (from 5s to 7s), the simulated crane tip extreme vertical motions are more violent than the 
prediction in frequency domain for both the tripod positions, because of the resonance of the coupled 
system around the 𝑇𝑇𝑝𝑝 range. The resonance mode is dominant by the tripod rotational motions, which 
cannot be considered from the frequency-domain analysis with HLV alone. It suggests that the predicted 
limiting sea states in frequency domain have been overestimated. For the sea states 4, 5 and 6 (with 𝑇𝑇𝑝𝑝 
equal to 8s, 9s and 10s, respectively), the simulation results quite agree with the frequency domain 
prediction in the case tripod hanging in air. However, the results are much lower when the tripod is 40m 
submerged due to the extra damping from the submergence. Moreover, in the submerged case, the 
simulated most extreme vertical motions are still lower than the pre-set limiting value 0.5m in the sea 
states 5 and 6, which signifies the underestimate of the limiting sea states in the frequency domain 
analysis. Hence, the decoupled frequency domain analysis may be used for preliminary assessment of 
limiting sea state, but it would incorporate some inaccuracy due to the neglecting of the coupling effects 
of the lifting system. 

 
Figure 8. The 95% quantile of the crane tip extreme vertical motion under the predicted limiting sea states. 

6.2.  Simulation of lowering process 
During the nonstationary lowering process, more critical responses (lift wire tension and tripod motions) 
may occur due to the nonlinear wave loads. Performance of the coupled system is investigated in the 
wave conditions with 𝐻𝐻𝑠𝑠 of 2.5m, wave direction of 180°, and varying 𝑇𝑇𝑝𝑝. While, the focus is on the 
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wave condition with  𝑇𝑇𝑝𝑝 = 7𝑠𝑠, since it is of high probability of occurrence based on the wave data scatter 
diagram of the reference site. It should be mentioned that the wave conditions here are selected 
independent of the prediction in frequency domain. 

Winch speed of 0.05 m/s is used. During the lowering phase, the winch runs from 300s until 1400s, 
equivalent to 55m wire releasing, which will lower the tripod from 13m above still water level until 3m 
above sea bed (42m in draft). Combined with steady state phases with 300s before and after the winch 
respectively, the length of each simulation is 1700s.  

In time domain simulation, the time step shall be set sufficiently small to capture the highest resonant 
frequency of the system. To capture one cycle of phenomena in the time domain, about 15 time-steps 
are required [15]. With the natural period of the coupled system in the range of 0.8s to 82s (through 
eigenvalue analysis), the time step is supposed to be no more than 0.8/15 = 0.06. It is set to be 0.02s 
for all the simulations. 

6.2.1.  Convergence study. Compared to the stationary simulation, the lowering process is subjected 
to transient effects due to nonlinear wave loads [12].  To verify the convergence of the simulations, 30 
different realizations (random seed number) are performed. The extreme motions and responses from 
each seed are compared with the mean value of all the 30 samples. Besides, a cumulative averaged value 
for seed number 𝑖𝑖 (the mean value from seed 1 to 𝑖𝑖), indicating the speed of convergence [15], is 
calculated. 

Figure 9 shows an example of the convergence in the lowering phase from 30 random seeds. The 
main responses include the lift wire tension and the rotational motions (pitch and roll) of the tripod. It 
can be seen from the figure that 30 seeds are sufficient to obtain convergent results (with the cumulative 
average in line with the mean of the sample) for the extreme responses concerned. 

 
Figure 9. Convergence test results (𝐻𝐻𝑠𝑠 = 2.5𝑚𝑚,𝑇𝑇𝑝𝑝 = 7𝑠𝑠 and 𝐷𝐷𝐷𝐷𝐷𝐷 = 180°). 

6.2.2.  Critical motions of the tripod. Besides the rotational motions, the offset of the tripod lower tips 
(lower end of the tripod legs) is also of concern, especially the lower tip adjacent to the hull of the vessel 
(see Figure 1). For the tripod, slight rotation may lead to large horizontal displacement at its lower tip 
due to the large size of the structure. To guarantee a safe clearance from the vessel during the lowering 
and ensure precise landing for smooth installation, large tip motions should be avoided.  
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Figure 10 shows an example (seed 2) of the critical motions of the tripod during the lowering process. 
Large fluctuations can be observed for the lower tip motions in X direction prior to the submergence 
(up to around 600s) of the tripod due to the large pendulum motions in air. However, it is damped out 
following the submergence into water, and the amplitude tends to stabilize until approaching the critical-
draft region where the tripod motions are excited [17]. The Y-offset at the lower tip determines the safe 
clearance from the HLV to avoid potential collisions. Whereas, the results of the tip motion in Y 
direction are far away from the truth due to the application of the constant specified moment on the 
HLV. As clarified, specified moment has been applied on the HLV to counter the overturning moment 
from the hanging tripod. Although equilibrium of moment is guaranteed in air based on the dry weight 
of the tripod, the balance is broken once the tripod dips into the waves. Following the submergence of 
the tripod, the decreasing wet weight of the tripod results in the overbalance of the specified moment, 
which causes continuous positive rolling of the HLV and consequently leads to the abnormal motions 
of the tripod. In this study, the tripod is originally positioned 8m away from the portside of the vessel, 
far enough to avoid any collision. But rather than the specified moment, time dependent ballasting is 
recommended for the future study to avoid the unwanted motions.   

 
Figure 10. Critical motions of the tripod during the lowering process (𝐻𝐻𝑠𝑠 = 2.5𝑚𝑚,𝑇𝑇𝑝𝑝 = 7𝑠𝑠 and 𝐷𝐷𝐷𝐷𝐷𝐷 = 180°). 

6.2.3.  Influence from the vessel type. Compared to the floating HLV, a jack-up vessel acts as a bottom-
fixed structure and provides a stable working platform.  

Figure 11 shows an example of the time series of tripod motions and the lift wire tension using the 
HLV and a jack-up. Compared to the large pitch and tip motion in air using the HLV, no vessel motions 
are transferred to the tripod from the bottom fixed jack-up vessel. After entering into water, the pitch 
motions are consistent for the two cases as the lowering continues which suggests that the motions of 
the tripod are then more affected by the wave forces than the vessel motions. Different from the case 
using the HLV, there are hardly any roll motion on the tripod using the jack-up, thanks to the long 
crested, head sea wave condition and the stillness of the jack up vessel. Consequently, the larger roll 
motion of tripod when using the HLV leads to larger dynamic tension force in the lift wire. Meanwhile, 
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the transversal offset of the tripod lower tip (using the HLV) is also more critical than the case using the 
jack-up. 

Figure 12 shows the statistical maximum lift wire tension and maximum rotational motions of the 
tripod under the sea states with varying 𝑇𝑇𝑝𝑝 by using two vessels. It can be observed that the rotational 
motions of the tripod and the tension in the lift wire are smaller by using the jack-up, especially in the 
long waves. The deviations from the vessel type are enlarged in the long waves with 𝑇𝑇𝑝𝑝 around 11s and 
12s, because of increasing motions of the HLV in long waves as the wave peak period approaches to the 
eigenperiod.  

 
Figure 11. Time series of the lift wire tension and the tripod motions by using different vessels (𝐻𝐻𝑠𝑠 = 2.5𝑚𝑚, 

𝑇𝑇𝑝𝑝 = 7𝑠𝑠 and 𝐷𝐷𝐷𝐷𝐷𝐷 = 180°). 
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Figure 12. Statistics of extreme responses under various 𝑇𝑇𝑝𝑝 by using different vessels (𝐻𝐻𝑠𝑠 = 2.5𝑚𝑚 and 𝐷𝐷𝐷𝐷𝐷𝐷 =

180°). 

6.3.  Simulation of lift-off operation 
Lift-off operation is critical, and many hazards may occur, such as snap loads in lift wire, unacceptable 
horizontal offset of object following the lift off or even re-hit after lift-off from a barge. To study this 
critical lifting phase, two cases, lift-off from its own deck and lift-off from a barge, are investigated by 
performing time-domain simulations. In this study, the barge is modelled with the same hydrodynamic 
characteristics as the crane vessel (HLV). They are positioned side by side, both heading against the 
wave. Varying hoisting speeds from 0.1m/s [10] are investigated for the case onboard lift-off.  

The winch starts from 200s. It firstly pays in the pre-set loose wire (1.5m) which is long enough to 
accommodate the relative motion between the crane tip and the seated tripod. The winch is kept engaged 
until the tripod is lifted 5m upward from its original sitting position. The total length of the dynamic 
simulation is set to be 450s, so that the system would stay in steady state for certain period after the 
winch stops. 

6.3.1.  Lift-off from the deck of the HLV. The simulation of the onboard lift-off is firstly carried out 
with the winch speed of 0.1m/s, under the sea state 𝐻𝐻𝑠𝑠 = 2.5𝑚𝑚,𝑇𝑇𝑝𝑝 = 7𝑠𝑠 and 𝐷𝐷𝐷𝐷𝐷𝐷 = 180°. No severe 
surge or pitch motion are observed, not to mention the negligible sway and roll in the head sea. Thus, 
attention is brought to the extreme tension force in the lift wire during the operation.  

Figure 13 shows the time history and the statistical maximum tension forces in the lift wire during 
the onboard lift-off with various hoisting speeds. It should be noted that the fluctuation of the wire 
tension force due to the stop of the winch which is not of concern in this study, has been filtered out. It 
turns out that the lift-off of the tripod from the deck of the HLV can be smoothly carried out without 
any slack wire for all the hoisting speeds concerned. Higher peak can be observed with larger hoisting 
speed, especially when the speed is increased from 0.4m/s to 0.5m/s. Hence, it is critical to control the 
hoisting speed during the lift-off. 
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Figure 13. Time series and statistical maximum tension force in the lift wire w.r.t. hoisting speeds (𝐻𝐻𝑠𝑠 =

2.5𝑚𝑚,𝑇𝑇𝑝𝑝 = 7𝑠𝑠 and 𝐷𝐷𝐷𝐷𝐷𝐷 = 180°). 

6.3.2.  Lift-off from a transport barge. Due to the increase of complexity of the coupled system by 
adding the barge, more wave seeds may be needed for the time-domain simulations to reach a reasonable 
convergence [18]. After convergence test, it turns out that 45 seeds of time-domain simulations for each 
sea state are sufficient to achieve convergent results for the extreme lift wire tension.  

The process in this case is much more violent compared to lift-off from the own deck of HLV, and 
high peaks of the coupling forces can be observed as shown in Figure 14. The results are selected from 
two seeds, seeds 22 and 39 corresponding to the extreme and the moderate situations from the 
convergence test. The peaks of the lift wire tension are snap loads following the slack in the lift wire. 
The snap load in the extreme wave seed (seed 22) is almost twice as large as the normal wire tension 
during hanging in the steady state after successful lift-off. It is the reason that slack slings or wires are 
recommended to be avoided [10] [19]. Although same settings as the onboard lift-off are applied in this 
simulation, such as the loose wire length (1.5m) and winch speed (0.1m/s), the lift wire gets stretched 
as early as 210s with few seconds earlier than the onboard lift-off. It is the result of the relative motions 
between the HLV and the barge. During the first load transfer, amplitude of the snap force can reach 
almost the level of the normal wire tension during hanging in steady state. Following the consequent 
slack-wire cases, the snap load further increases until the tripod is successfully lifted off. The peaks of 
the fender force also increase following each slack-wire until the lift-off is completed. 
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Figure 14. Time series of the coupling forces (𝐻𝐻𝑠𝑠 = 2.5𝑚𝑚,𝑇𝑇𝑝𝑝 = 7𝑠𝑠 and 𝐷𝐷𝐷𝐷𝐷𝐷 = 180°). 

Regarding the motions of the system during lift-off, the whole process can be divided into three 
phases. Phase one lasts until the lift wire gets taut (around 209s). The dynamic system can be treated as 
two separate systems, the barge with tripod seated on and the floating HLV. Phase two is the continuous 
lifting until the successful lift-off (until around 227s). The last phase refers to the consequent steady 
state hanging in air which also comprises of two separate systems, the free barge and the HLV with the 
lifted tripod. Slack and re-hit occurs during phase two. 

Figure 15 shows the critical motions of the tripod during the lift-off from a barge. In the first phase, 
the motions of the tripod are similar as those of onboard lift-off. In this phase, little roll or sway can be 
observed due to the head sea condition, which contributes to the near-zero tip motion in Y direction. On 
the other hand, small pitch and surge motions occur which leads to few tip motions in X direction. 
During phase two, tripod motions become bigger but still moderate. Attention is brought to the motions 
immediately after the successful lift-off. Large tripod motions can be observed, followed by noticeable 
tip motions in both X and Y direction. Even with time dependent ballasting system, significant motions 
would be involved on the HLV due to the transfer of the heavy load (the tripod). In this case, more 
attention shall be paid to verify the safety clearance to avoid the collision.  
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Figure 15. Critical motions of the tripod (𝐻𝐻𝑠𝑠 = 2.5𝑚𝑚,𝑇𝑇𝑝𝑝 = 7𝑠𝑠 and Dir=180°). 

Compared to the onboard lift-off with minor motion responses, lift-off from a barge is much more 
demanding, accompanied by critical snap load and significant motion responses. 

7.  Conclusions  
The installation of a tripod foundation using a heavy lift vessel (HLV) was investigated in this study. 
The limiting sea states were firstly calculated in the frequency domain and later verified in the time 
domain. In frequency domain analysis, case studies were included using different wave directions and 
crane tip positions. Then, numerical modelling and time-domain simulations of the coupled dynamic 
system during the lowering phase and the lift-off phase were performed. For the lowering phase, 
comparative studies using two types of installation vessel, the HLV and the Jack-up, were investigated. 
For the lift-off phase, two scenarios, lift-off from the own deck of the HLV and lift-off from a transport 
barge were studied. Besides, case study on various hoisting speeds during the onboard lift-off was also 
presented. 

Based on the investigations, some essential findings can be summarized in the following: 
1) The crane tip vertical motion can be greatly mitigated by locating the crane tip toward the mid-ship 

and consequently severer sea states can be tolerated. Rougher sea states can also be tolerated by 
aligning the lifting vessel in the head sea rather than in oblique waves. 

2) The predicted limiting sea states using frequency domain method is found inappropriate due to the 
neglecting of the coupling effects of the lifting system. The calculated limiting 𝐻𝐻𝑠𝑠  were 
overestimated in short waves but underestimated in long waves compared to the time-domain results 
with tripod submerged in 40m draft.  

3) The vessel type has significant impact on the system responses. Both the wire tension and the tripod 
motions are smaller by using the jack-up. Especially during the lowering in air, barely any tripod 
motions occur when using the jack-up. 



18

1234567890

First Conference of Computational Methods in Offshore Technology (COTech2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 276 (2017) 012012 doi:10.1088/1757-899X/276/1/012012

 
 
 
 
 
 

4) Compared with the onboard lift-off, there are much more challenges for the lift-off from a barge. 
Under the considered wave condition, the onboard lift-off operation can be smoothly performed 
while the lift-off from the barge experiences critical snap load and violent tripod motions.  
Taking into consideration the simplifications in the present numerical models, recommendations for 

future work are discussed as follows: 
1) Shielding effects from the HLV on the responses of the tripod should be taken into consideration. 

The simulations in this study were carried out in the undisturbed waves. Referring to the investigation 
[7], shielding effects may be significant especially in short waves. 

2) The effects from wave spreading (short crested wave) should be considered. This study was 
conducted in long crested, head sea wave condition for the nonstationary time domain simulations. 
It may result in non-conservative results, especially the roll related motions.  
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