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Abstract. A method is developed for generating a set of unique weather time-series based on an 
existing weather series. The method allows statistically valid weather variations to take place 
within repeated simulations of offshore operations. The numerous generated time series need to 
share the same statistical qualities as the original time series. Statistical qualities here refer 
mainly to the distribution of weather windows available for work, including durations and 
frequencies of such weather windows, and seasonal characteristics. The method is based on the 
Markov chain process. The core new development lies in how the Markov Process is used, 
specifically by joining small pieces of random length time series together rather than joining 
individual weather states, each from a single time step, which is a common solution found in the 
literature. This new Markov model shows favorable characteristics with respect to the 
requirements set forth and all aspects of the validation performed. 

1.  Introduction 

1.1.  Problem description 
Weather conditions are a key limiting factor when it comes to offshore operations. For a specific work 
task to be carried out e.g. in an offshore wind farm, a certain weather window is needed. The weather 
window is described by a set of operational weather criteria over a certain time span, also known as the 
window length. The weather criteria in this study include maximum mean wind speed and maximum 
significant wave height. Detailed analysis of weather window lengths has high economical value. A 
study of the impact of uncertainty in repair time for offshore wind farm maintenance planning [1] 
confirms the importance of studying weather uncertainty. 

To find suitable weather windows for a certain offshore operation we can use weather forecasts, 
however forecasts are only applicable when doing short term planning. When doing long term planning, 
e.g. for wind farm installation or lifespan maintenance operations, weather forecasts are not available. 
Instead, historical weather data for the relevant site need to be used, and predictions need to be made 
based on a large set of possible weather scenarios. 

1.2.  Weather data time series 
The historical weather data is stored as a time series. A weather time series consists of measurements at 
each time step throughout a selected period of time. The measurements at each evenly spaced time step 
record a predefined set of weather parameters. The measurements can contain observations such as 
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atmospheric pressure, ocean current speeds, visibility, etc., however the type of time series being 
processed in this study contains observations of the mean wind speed and the significant wave height. 

1.3.  Aims 
As described above, to make the best possible predictions for the future in a statistical way, a somewhat 
large and appropriate variety of possible weather outcomes is needed. The historical weather data time 
series is an excellent starting point to use for simulation purposes, however it is desirable to have an 
endless set of unique, realistic weather data time series for repeated simulations. The generated weather 
data time series must on average represent the historical weather data well. This has in part been 
achieved previously with a standard Markov chain model [2]. One major challenge with the standard 
Markov chain model is related to the discretization of weather parameters into weather state categories, 
as explained more in section 3.3 “Classification of weather states” below. 

The loss of details when categorizing weather parameters into a set of weather states can be made 
non-relevant if the weather state transition thresholds are aligned with the weather criteria limits. For 
example, if the significant wave height Hs for a certain operation needs to be below Hs = 2 m, then as 
long as the weather states distinguish clearly when transitioning across Hs = 2 m, then it becomes non-
relevant for that specific operation what the exact Hs value is. However, it is not always easy to tailor 
the categorization threshold levels. For instance, when analyzing composite offshore operations, many 
different weather criteria are involved, such as access criteria for different types of vessels, lifting 
operations, etc. Thus, it can become challenging to tailor the categorization limits according to all the 
different weather criteria involved in a specific study. Increasing the detail level by using a very fine-
grained categorization of weather states is not necessarily a good idea either. It can result in too many 
weather states, causing too few transition options between each of the weather states.  

The generated time series is traditionally limited in detail because of the categorization of weather 
parameters into weather state categories. The aim of the Markov model presented in this paper is to 
conserve output details that are normally lost within each weather state category. Although building on 
the favorable computational strategy from [3], as described in section 3.2 “The proposed Markov 
model”, improvements were also sought with respect to the computational efficiency of the Markov 
chain implementation. 

2.  Markov Chain theory 
The Markov chain concept is fully relevant for the Markov model in this paper. Markov chains are 
stochastic chains which fulfill the Markov property. The term stochastic refers to the probabilistic or 
random nature of a process. The Markov property defines that the probability of a certain state appearing 
as the next element in the chain is dependent only on the current state in the chain [3]. In other words, 
when selecting the next state in the chain, only the current state is needed to determine the probability 
distribution for selecting the next state, and the elements before the most recent element in the chain are 
ignored. Note that the Markov property does not imply that the coming element in the chain is 
uncorrelated with respect to the elements that are further away than the nearest neighbor. The probability 
of a certain state appearing two steps down the road can be calculated using the probability distribution 
for the first next state combined with the probability distributions for the second next state which are 
conditional on the first next state.  

How does the Markov property fit with the physical real world weather system? The real-world 
weather system is known as a chaotic system. Chaotic systems are deterministically defined given an 
exact starting condition for the system, despite their appearance as random. However, the exact 
condition of the global weather system is far out of reach of modelling, and the available data for a 
certain analysis will certainly be a far greater limitation. Given the limited data available for each time 
step in the historical data, it can be tempting to make that next weather state dependent on more than 
just the current weather state when defining the model to be used. In the end, nonetheless, it is the 
statistical properties of the output which matter, and using the principles from a Markov chain model 
proves efficient and suitable. 
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3.  Method 

3.1.  Input data – Historical weather series 
As described in the introduction, the historical weather data serves as input and consists of weather 
measurements for each time step over several years. The time step Δt is typically 1 or 3 hours, and is the 
average measured quantity over that time step. The weather measurements always include significant 
wave height Hs and mean wind speed U, and more weather parameters can be included in the algorithm.  

3.2.  The proposed Markov model 
The Markov model algorithm developed consists of two main parts. The first half parses and analyzes 
the historical weather data. The last part combines appropriate weather sequences stochastically into a 
whole new time series, which means using weather transition probabilities determined in the first part 
of the algorithm.  

Again, the first part of the algorithm parses through the historical weather file. It categorizes the 
weather state at every time step. This is done by classifying the wave height into a category defined by 
a maximum and minimum value of significant wave height. Equivalently, the mean wind speed is 
classified into a category of wind speed magnitude. The two categories together define the weather state. 
More details are described in the “Classification of weather states” section below. 

When using the traditional state-by-state Markov process to generate new time series as described in 
[3], it is common to describe the process by transition probabilities. These transition probabilities can 
be calculated while parsing the historical time series file, and they can be stored in a large matrix. The 
matrix will be n by n large, where n is the number of unique weather states available in the mentioned 
weather state classification. For any reasonable weather state resolution, that matrix will easily be too 
large to store in computer memory. Adding a few gigabytes of memory will not help much since the 
memory requirement is proportional to n2. It is a highly sparse matrix, meaning that the matrix contains 
for the most part elements with value zero. On the other hand, storing the entire historical time series in 
memory is far more manageable. It simply means storing a copy of the entire weather data file in 
memory. 

So even though describing the process with transition probabilities is correct and useful for 
understanding the process, the entire calculation of the transition probabilities can be omitted. Instead, 
the historical time series can be searched in a strictly random fashion with the right constraints, and the 
probability of the next weather state will be correctly represented. The process takes place in the last 
part of the algorithm. This computational strategy was preferred in [3] and is even more suitable with 
the new piecewise level of using the Markov process which is described in the last part of the algorithm.   

The last part of the algorithm starts out making a new time series by selecting a random year from 
the historical time series and a random start date which is close to the desired start date of the generated 
time series. A small piece of the historical time series is then copied from the selected starting point and 
used as the first part of the generated time series. The small piece copied from the historical time series 
is set to have a random length, uniformly distributed with minimum and maximum length defined to be 
6 - 48 time steps, which is conversely 6 - 48 hours in most cases.  

The exact choice of 6 – 48 time steps as the building block length is a design choice, which was tried 
out and found to balance characteristics of the output in a good way. The balance is mainly considering 
variability in the output vs. keeping imperfections of joining blocks together from affecting the natural 
weather window distribution. The end validation is needed to confirm if both these considerations are 
properly achieved. Smaller and larger blocks are assumed to also work well and produce similar quality 
output, and keeping the block sizes a random length reduces the possibility for systematic impurities. 
The block sizes do affect the performance of the algorithm slightly since larger block sizes result in 
fewer search and join operations, however performance does not influence the choice of block sizes for 
the current application.  
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Next, a new sample from the historical time series is drawn at random with two restrictions. The first 
restriction ensures that the new sample starts out with a weather state which is selected from one of the 
possible state transitions, according to the historical data set. This is ensured by selecting one of the 
existing weather transitions from the historical file directly. It is a critical criterion for maintaining 
realistic weather development in the generated time series. It is equivalent to the Markov Chain process, 
in which the next state is drawn by transition probabilities which depend on the current state. 
Specifically, the historical weather file is traversed in a random order, looking for an historical point in 
time where the weather state is identical to the last weather state of the time series being generated. The 
weather state immediately after the first random matching historical state is selected as the next random 
weather state. However, for the piecewise process level in this algorithm, the next 6 or up to 48 data 
points are selected together to become the next piece of the new time series.   

As the first search restriction ensured that the new piece for the generated time series matches the 
previous piece, the second restriction ensures seasonal correctness in the new time series. The second 
restriction ensures that the new piece originates from the same calendar month as the calendar month it 
is representing in the generated series, although it can originate from any year.   

If no matching weather state is found within the historical data for the specific calendar month, a 
transition is selected without restriction on calendar month. This can be relevant in transitions from one 
month to another, in combination with a rare weather state. In that case, there will be at least one 
matching transition in the historical time development, unless of course the sampling reached the very 
end of the entire historical file. If no transition is found at all, i.e. at the very end of the imported data, 
then a completely new state is drawn corresponding to the current season. 

A new sample from the historical time series is repeatedly drawn in the same way, based on the 
preceding weather state, and added to the output time series. 

3.3.  Classification of weather states 
The needed classification of weather states represents a discretization of weather parameters. The 
representation of each weather parameter becomes constricted to the set of available categories. An 
important reason for not using a too fine-grained classification of weather states is to avoid significant 
quantities of deterministic transitions. Deterministic transitions occur when a certain state only has one 
possible state transition to continue from, namely the next state in the historical data.  

For the current Markov model implementation, the weather state categories are defined by the 
following. The step size for wave height categories ΔHs is ΔHs  =  0.1 m  while the wind speed category 
step size ΔU is ΔU =  1.0m

s
.  

The category steps are widened at the more extreme and rare ends of the spectra. The classification 
of weather states is both a necessity to solve the task and, at the same time, it cannot be very fine-grained 
in order to keep the random nature of the process, as already discussed. The main novelty of the 
developed piecewise approach to using the Markov chain process is to produce time series which display 
weather details beyond the weather state classification.  This can be explained by giving an example 
from the traditional Markov chain model. In the traditional model, the resolution of the weather 
measurements is limited by the category step size in the weather state classification. For the current 
setup, that would result in wind speed values stepping 1 m/s at a time, i.e. no intermediate values.  

The core idea in the new development is to process small pieces of the time series as one unit, i.e. 
batches of a few time steps, with all uncategorized details preserved. This contrasts with traditionally 
processing individual data points from single time steps which are limited to representing only a general 
weather state category. 

4.  Validation analysis 
The aim of the validation analysis is to determine both the degree of diversity among the generated 
weather series and how closely the group averages of key time series properties resemble the historical 
weather. 
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Figure 1. Seasonal available time for work for 5 single-year time series, historic data in left view and 
Markov model output in right view, given weather criteria: Hs < 1.5 (m) ∩ U < 12 (m/s). 

The key properties relate to weather windows which are time slots available for work. These weather 
windows are all dependent on the weather criteria, which dictate at what times the certain work tasks 
can be performed or not, offshore. The criteria consist of maximum allowed significant wave height 
Hs,MAX and maximum allowed mean wind speed UMAX for any specific work task to be possible.  

The weather time series used for validation and presentation of results is an anonymous 21-year 
length weather data time series with time step Δt = 1 hour, from a relevant site. The characteristics of 
the data series are illustrated graphically in the figures, where sets of generated time series are compared 
to the original data series. The algorithm has not in any way been adjusted according to the result of the 
specific validation performed here. Thus, any weather data time series can be used to reproduce the 
validation of the algorithm. The key to validating the algorithm is the comparison between generated 
and original time series, which is the purpose of all the figures.   

A typical weather criteria (UMAX and Hs,MAX) is selected for the validation analysis presented here, 
and is displayed in the caption of each graph. The most common weather requirements are related to 
transferring personnel onto the wind turbines using for instance crew transfer vessels. The weather 
criteria chosen in this validation analysis is a typical criterion, but not related to a specific vessel or task. 
The significant wave height is typically the limiting factor for traveling offshore to work on wind farms, 
and most working limits are set between 1 and 2 m significant wave height (Hs). 

Regardless of these details, the success criterion of the algorithm is how well all the generated time 
series compare to the actual historical time series. That is why each of the following analysis graphs 
compare the generated time series directly to the original historical time series. The comparison is done 
for a chosen set of key properties.  

Key properties of the time series include  
• the proportion of time available for work,  
• the distribution of weather windows according to window length metric,  
• and the averages of these values for each season of the year as measured per calendar month 

(Figure 3).  
Together, these properties give a well-defined picture of the time series on a group level.  
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Figure 2. Weather window distribution for individual 1-year series, displaying combined (sum of) 
weather window durations (as percentage of entire weather series) grouped and arranged as a function 
of individual weather window lengths, showing historical data in the top view and Markov model 
data in the bottom view, given weather criteria: Hs < 1.5 (m) ∩ U < 12 (m/s). 

 
Single-year time series are presented in Figure 1 and Figure 2. Single-year time series offer easy 

comparison between generated and historical time series because the multi-year historical time series 
can be broken down into several single-year time series. That way the variation between different 
historical time series can be compared to the variation within generated time series. Each of Figure 1 
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and Figure 2 consists of two separate graph displays. They contain results for historical time series and 
equivalent analysis results for the generated time series, respectively.  

Figure 1 displays time available for work in sum for each season of the year. The left display contains 
results of 5 single-year historical time series, whereas the right display is based on an equivalent set of 
generated time series.  

Figure 2 is based on the same set of single-year time series as in Figure 1. However, Figure 2 shows 
the combined window duration (sum of window lengths available for work) of all weather windows 
grouped and arranged by duration of the individual weather windows. Each time series is displayed with 
a separate graph line and legend indicator. The horizontal axis marks the size of the individual weather 
windows within the group, at each data point.  

From the graphical comparison in Figure 1 and Figure 2, variations within historical and within 
modelled time series appear similar, which is a highly desired result. 

Figure 3 compares average data from 100 generated time series to the historical data. The historical 
data and each of the generated time series consist of 21 years of weather data. The data has an hourly 
time resolution, which means a time step value Δt = 1 h.  

 

 

 
Figure 3. Seasonal average available time for work 
and average window length – historical time 
series compared to average of 100 runs, given 
weather criteria: Hs < 1.5 (m) ∩ U < 12 (m/s). 

 Figure 4. Seasonal average available time for 
work, comparing five 21 year runs to the 
equally long historical time series, given 
weather criteria: Hs < 1.5 (m)∩U < 12(m/s). 

The modelled time series do not distinguish daytime and nighttime. As mentioned in [3], some wind 
and sea state series have daily components, however these potential aspects are not considered relevant 
for the current applications of this Markov weather model, namely applications which are simulation of 
offshore wind farm operations.  

Validation analysis of the algorithm shows that in each generated time series, approximately 99 % 
of the stochastic time series segments (6-48 entries in duration) were joined differently compared to in 
the historical time series. This applies to the 21-year data and for the granularity of state classification 
specified above, which is a 0.1 m resolution of wave height and 1 m/s resolution of wind speed. It proves 
a very good random variability in the output. 

Figure 4 shows available time each season according to the weather criteria for a selection of five 
full 21-year output series. The historical reference values included are identical to the reference data in 
Figure 3.  

Figure 5 shows a distribution of the available time according to individual window length. The 
durations of similar length weather windows are combined and distributed on the x-axis in the same way 
as Figure 2. 
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Figure 5. Combined duration (sum) of weather windows from six 21-year 
series distributed according to individual window length, given weather 
criteria: Hs < 1.5 (m) ∩ U < 12 (m/s). 

 
The area under the curve gives a measure of time of the whole series covered by each interval of 

window lengths. Again, five full 21-year modelled time series are plotted together with the direct 
representation of the historical data. The combined view of six time 21-year series allows an impression 
of the variability between runs. 

5.  Conclusion 
The improved Markov Chain model is developed for generating unique weather time-series based on an 
existing weather series. Despite the undesirable but necessary discretization of weather data into weather 
states, the method successfully recreates high detail levels in the generated time series. This is achieved 
by applying the Markov process using very small segments of the time series as building blocks instead 
of using single data points. That way the natural development within a single weather state category is 
recreated in the generated time series. The validation performed on the developed Markov model also 
shows excellent results. 

In summary, all aspects of the generated time series are quite indistinguishable from original ones, 
both in terms of degree of variability between individual time series, as well as group averages. Even 
when graphing out actual parts of a time series, which is omitted here, it is quite non-trivial to distinguish 
a modelled time series from an original time series. This is in strong contrast to the traditional Markov 
chain output, which coarsely outputs average of each weather state. For example, the traditional Markov 
chain output would in an equivalent setup produce wind speed values with steps of 1 m/s and no 
intermediate wind speed values.  
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For the purpose of weather windows available for work, historical and generated time series are seen 
as interchangeable, based on any of the validation findings known. That satisfies the primary aim of the 
algorithm.  

The developed Markov model has been used with many historical weather files and in countless 
simulations of offshore wind farm operations during the last year. The computational performance is 
also improved by more than tenfold, as well as the complexity of the algorithm being simplified to a 
good extent, especially since no post-processing to smooth the output is needed. From all the use cases 
known, no issues have been identified so far which can question the validity of the algorithm. 
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