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Abstract. Computational Fluid Dynamics (CFD) is established in design and analysis for
a range of industries, but its use in Marine and Naval Hydrodynamics is behind the trend.
This can be attributed to the complexity of modelling needs, including presence of free surface,
irregular transient flows, fluid-structure coupling and presence of established modelling tools
based on potential theory.

In this paper, state-of-the-art of CFD in Naval Hydrodynamics, wave and offshore
applications is given, with an update of recent advances, validation and computing requirements
for typical simulation cases.

1. Introduction

Since the beginning of the 21st century, Computational Fluid Dynamics (CFD) has become
well established across the range of engineering applications. CFD results are well understood,
expectations on accuracy in design studies can be satisfied. For example, automotive industry
uses CFD to significantly reduce the use of experimental studies in aerodynamics, internal
combustion engine design and exhaust gas after-treatment. Indeed, CFD studies are now
regularly performed in applications which were never properly analysed experimentally, such
as passenger compartment comfort, vehicle soiling and acoustics-related phenomena, where the
design primarily relies on CFD results.

Acceptance of CFD in marine engineering, naval hydrodynamics and evaluation of wave
loads appears to be lagging behind the trend of other industries. This is partially due to the
complexity of free surface flows, but mainly by the fact that the phenomena under consideration
imply significantly higher computational requirements. For example, sea-keeping studies of ships
in irregular waves or calculation of transfer functions for wave loading on floating structures still
cannot be performed at acceptable speed. “Engineering time-scale” in product design requires
turn-over time of 8-12 hours for simulations to be practically useful.

An important factor in the acceptance of CFD is the presence of alternative simulation tools.
Numerical models based on potential flow theory are widely accepted, fast and validated and
have been in use for more than a decade. The potential flow assumption, whole adequate for a
part of industrial needs, brings it own limitations, mainly due to the formulation, or failure to
account for coupled/non-linear effects. The best example is the evaluation of added resistance in
waves, which may provide adequate loading results on the hull, but cannot account for forward
speed of the ship.

The challenges for CFD modelling in naval hydrodynamics can be grouped as follows:
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• Handling of discontinuity at the free surface;

• Accurate tracking of free surface position;

• Issues of force evaluation and hydro-mechanical coupling;

• Generation and propagation of surface waves, of various nature: deterministic single- and
multi-frequency- wave trains, wave focusing and statistical modelling of realistic irregular
sea states;

• Modelling of rigid or flexible floating structures;

• Interaction with global external forces, such as mooring systems and propulsors;

• Modelling of extreme wave events such as freak wave impact or green sea loads;

• Statistics-based models, such as 3-hour-storm or safe return to port simulations and

• Full scale effects.

In what follows, recent advances for each of the listed topics from the author’s work shall
be presented. The paper will conclude with a readiness assessment of CFD tools for simulation
types of varying complexity.

2. CFD Modelling of Free Surface Flows

The two-fluid model for immiscible incompressible free surface flows is well established, consisting
of phase continuity, combined momentum equation and global continuity equation.

∂α

∂t
+∇•(uα) = 0, (1)

∂(ρu)

∂t
+∇•(ρuu)−∇•(µ∇u) = −∇p+ ρg, (2)

∇•u = 0, (3)

where α is the phase fraction, ρ, u and µ are combined density, velocity and viscosity, by virtue
of the immiscibility condition, e.g.[1]:

ρ = αρ1 + (1− α)ρ2, (4)

u = αu1 + (1− α)u2, (5)

µ = αµ1 + (1− α)µ2. (6)

Here, ρi, ui and µi represent phase density, velocity and viscosity, respectively. This model is
capable of describing the details of non-linear wave interaction with marine objects.

In practice, the equation set is enhanced by turbulence modelling, dynamic mesh support,
coupling with a rigid or elastic motion of solid boundaries, wave generation and absorption
etc.but sufficiently illustrates the numerical challenges.

3. Discretisation and Numerics for Discontinuous Variables

The Finite Volume Method (FVM) [2] is a method of choice for numerical simulation of fluid
flows, due to its combination of strict conservation, simplicity, efficiency and flexibility. Free
surface flow modelling brings further challenges, to be addressed below.

3.1. Body Force and Pressure Gradient

The first challenge relates to the handling of body force ρg in presence of a step change in
ρ. In hydrostatics, the body force and pressure gradient need to balanced and discretisation
consistency in the momentum equation requires that the computational stencil for the balancing
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terms needs to match. In (2) this is clearly not the case, resulting in pressure chequerboarding.
To remedy the problem, the pressure variable is redefined:

pd = p− ρg•x, (7)

yielding a reformulated balanced momentum source term

−∇p+ ρg = −∇pd − (g•x)∇ρ, (8)

with matching computational stencil for ∇pd and ∇ρ.

3.2. Interface Jump Conditions

While (8) resolves the pressure chequerboarding problem, it still contains the gradient of the
(discontinuous) ρ at the interface. A practical consequence of numerical gradient evaluation for
a step-function is the parasitic velocity at the interface. Quetey et al [3] take into account
the discontinuities at the free surface within the FVM, assuming that the free surface always
coincides with the mesh faces. Such an approach requires significant mesh refinement at the free
surface. The problem is resolved by the Ghost Fluid Method (GFM) [4] developed by Vukčević,
accounting for discontinuities at an arbitrary location in the mesh.

The second-order accurate GFM is derived from the assumption of piece-wise constant
phase density, allowing (2) to be rewritten in terms of continuous velocity field u instead of
discontinuous linear momentum ρu:

∂u

∂t
+∇•(uu)−∇•(ν∇u) = −1

ρ
∇p. (9)

Presence of the interface is accounted for in interface jump conditions with [ψ] = ψ− − ψ+

denoting the jump of the variable at the interface:

[u] = 0, (10)

[p] = 0, (11)
[

1

ρ
∇pd

]

= 0. (12)

The jump conditions directly account for discontinuous density and pressure gradient at
the interface and are built into the discretisation for pressure gradient and Laplacian. Precise
location of the interface is evaluated between the two cell centres straddling the free surface
from interface tracking information.

4. Handling of the Free Surface

The primary consideration of modelling of free surface flows is the capturing of position and
topology of the free surface. Its position profoundly influences the flow solution to which it is
coupled in a non-linear manner. In this section, we shall review some options on free surface
handling and implications to the needs of marine CFD.

There are two fundamental approaches. Surface tracking deforms the computational mesh at
the interface to comply to its current configuration, usually reducing the problem to a moving
boundary single-phase flow [5, 6]. Surface capturing uses a continuum representation of the
free surface and the actual position of the interface is obtained via post-processing. Examples
include various forms of marker-in-cell or particle-in-cell simulations, solution of the Volume-of-
Fluid (VOF) [1, 7, 8], level-set [9, 10, 11, 12] or similar [13, 14].
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4.1. Linearised Free Surface and Surface Tracking

Surface tracking is a straightforward way of dealing with a moving free surface [15], whose
position is defined by a double boundary condition:

• Fixed surface pressure, either assuming atmospheric pressure above water level or via
pressure continuity in two-phase flows;

• Zero net flux through the surface, defining the surface normal velocity to be equal to the
mesh motion flux.

In its simplest form, the free surface boundary condition is linearised in terms of pressure
and surface elevation without deforming the mesh, yielding the linearised free surface model.
Mode complex formulations involving a deforming mesh provide a more accurate description of
surface motion with a modest increase in computational cost.

The main advantage of surface tracking is that fact that the free surface problem may be
reduced to a single phase, without the need of increased resolution of the computational mesh
near the surface. It disadvantages relate to complexity of mesh motion, interaction with solid
boundaries of complex shape and most importantly its inability to efficiently handle changes in
surface topology such as breaking waves.

4.2. Surface Capturing Models

Surface capturing models use a continuum representation of the free surface, via a volume
fraction or a general colouring function. They can be divided into three major groups, illustrated
in Fig. 1:

∇
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Figure 1. Interface capturing schemes: Level Set, Phase Field and Volume of Fluid.

• Volume of Fluid (VOF) methods (1), [1] is simple to understand and strictly satisfies the
phase conservative condition but suffers from the need to advect the step-function in α

without unboundedness or smearing;
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• Seeking a “smoother” solution variable, Level Set (LS) methods [9] solve for the signed
distance to the interface. While the solution no longer contains a step, LS does not guarantee
mass conservation either, which is a major drawback. Furthermore, the discretisation error
in the transport appears as a loss of unit gradient for the distance function; as a result, the
advection step is usually followed by re-initialisation. This can be done by direct calculation
of distance [16] in a narrow band, or by solving an additional Eikonal equation to propagate
the unit gradient constraint [17]. The best methods use implicit re-initialisation [12] or
combine mass conservation properties of VOF and smoothness of LS in some way [11];

• Phase Field (PF) methods are developed on a basis that there exists a transport
equation for self-similar advection of a tanh profile [18]. With appropriate mathematical
reformulation [12] it is possible to cast the PF equation into the LS form, treating all terms
fully implicitly within the FV framework. This effectively combines the advection and
re-initialisation step of LS into one.

Based on extensive experience with all of the above, we typically choose VOF for problems
where mass conservation is crucial [19]. For solution decomposition methods, it is preferable to
choose an unbounded variable and LS methods are preferred [12, 20].

4.2.1. Volume-of-Fluid and Sharp Interfaces While the VOF equation brings advantages such
as clear variable bounds and strict phase conservation, its weak point is the shape of the advected
profile. For good performance and accurate surface-to-surface interaction it is necessary to
preserve the sharpness of the step profile denoting the free surface position as accurately as
possible. Various forms of interface compression are used in practice, either based on numerical
artefacts of convection schemes [1] or quasi-physical compression [21].

4.2.2. Geometric Reconstruction Methods Alternative formulations of free surface advection
exist, where a “perfect”advection of a step profile is achieved with the use of geometric methods,
albeit at a considerably higher computational cost. Recently, Ronby et al [22] introduced
isoAdvectormethod, where accurate VOF advection is achieved through evaluation of VOF face
flux with the use of a fluxing iso-surface for each face, Fig. 2. The method is explicit, practically
limited by the Courant-Friedrichs-Levy (CFL) condition and significantly more expensive than
conventional advection, but it produces remarkable results.

Geometric free surface advection scheme such as isoAdvector are used in cases where
practical limitations in local mesh size exists and a clean interface is essential. A good example
is a green sea simulation or slamming impact.

4.2.3. Level Set Methods As already noted, LS methods suffer from two drawbacks: lack of
strong phase conservation and need for re-initialisation as a means to preserve unit gradient of
the distance function. Vukčevic et al [12] introduce an alternative formulation of the LS, inspired
by the properties of the terms in the PF equation which preserve self-similarity. Reformulated
PF terms in the LS equation not only remove the need for separate re-initialisation but also
improve the conservation properties compared with the original LS formulation written for the
signed distance variable ψ:

∂ψ

∂t
+∇•(cψ)− ψ∇•c− b∇•(∇ψ) = b

√
2

ǫ
tanh

(

ψ

ǫ
√
2

)

, (13)

where ψ is the signed distance function, c is the combined convective velocity:

c = u+ b

√
2

ǫ
tanh

(

ψ

ǫ
√
2

)

∇ψ + bκ
∇ψ
|∇ψ| , (14)
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Figure 2. Calculation of the face flux using the isoAdvector scheme, [22].

where b is a numerical parameter used to smear out possible local singularities, ǫ is the smearing
distance for the PF representation of the LS field and κ is the mean interface curvature. In
the absence of curvature driven motion, as is the case in ship hydrodynamics free surface flows,
the three terms on the r.h.s. of (13) numerically maintain the signed distance profile implicitly
during the transport [18].

Although numerically more complex, this equation incorporates self-similar advection through
a balance of additional convection and diffusion terms and is treated in a fully implicit manner.
Furthermore, as ψ is not a bounded variable, it is suitable for use in solution decomposition
strategies, as described below.

4.3. Hydro-Mechanical Coupling

The case of a floating body supported in free surface flow is often encountered in naval
hydrodynamics. Here, the force balance on a floating body is handled via a 6-Degrees-of-
Freedom (6-DOF) Ordinary Differential Equation (ODE) with body forces being balanced by
pressure and friction acting on the wetted surface. In response to the 6-DOF solution, wall
boundary is moved in the CFD domain, changing the hydrostatic and hydrodynamic response
in a non-linear manner.

Hydro-mechanical coupling is resolved via outer flow – 6-DOF iterations at considerable cost.
A representative number of outer iterations on the system is 6 to 8, with a total of 24 pressure
solutions within a single time-step. Gatin et al [23, 24] propose an enhanced 6-DOF to pressure
coupling, where the boundary motion is included into the fluid pressure solution. The new
algorithm resolves the hydro-mechanical coupling in as little as 2 outer and 2 PISO iterations,
reducing the CPU time by a factor of 3.
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5. Wave Generation and Propagation

With numerical techniques described above it is possible to assemble an efficient CFD tool
for free surface flows. In practical applications, a significant part of structural loading results
from wave action: it is thus necessary to develop a wave initialisation technique within the
CFD framework. The objective is to introduce a realistic wave elevation and velocity either for
monochromatic waves or wave spectra into the CFD simulation with minimum distortion.

Wave reflection would naturally occur at the outlet and side boundaries may potentially
destroy the solution; it is necessary to devise an appropriate practice to remove undesired wave
reflections from domain boundaries.

5.1. Waves and Relaxation Zones

For simple monochromatic waves, waves can be introduced via a conventional wave boundary
condition. For more complex waves, e.g. in wave focusing or irregular sea states, a simple
boundary condition does not provide necessary fidelity. Also, removing reflection at outlet
boundaries via a boundary condition works well only when the wave-length and speed of
propagation is known. For those reasons, a relaxation zone approach is preferred [25], where the
CFD solution is blended with the prescribed “far field” wave state within a relaxation zone.

In our simulations we use a modified form of relaxation, where the blending is performed
implicitly, at the level of discretisation matrix [12, 20, 26]. The implicit method is not only
more consistent and robust, but also works well with relaxation zone length of the order of
one significant wave length. Detailed verification and validation data for the use of implicit
relaxation zones is reported in [27, 20].

In sea-keeping and global performance simulations, we use relaxation zones with a prescribed
“far-field” wave theory across all boundaries. This allows generality in a sense that the waves
can propagate in arbitrary directions. With this approach, it is also easier for the analyst to
establish how accurately the waves are transported through the CFD region, as any dissipation
(loss of amplitude) or dispersion (phase error) becomes immediately visible in the results.

5.2. SWENSE Formulation

In sea-keeping or global performance CFD, far field wave condition carries a bulk of the flow
solution. The effect of the floating body on the wave field, via diffracted and radiated waves
presents only a fraction of the solution – if the non-linearity may be considered low. It is
therefore reasonable to use the SWENSE solution decomposition technique [28, 12], where the
CFD solution is decomposed without simplification into two parts:

ξ = ξI + ξP , (15)

where

• ξI is the incident field, representing the far field wave condition and

• ξP is the perturbation field, representing the difference between the complete non-linear
flow solution and the chosen incident field.

Under such decomposition, and with a wisely chosen incident field (|ξP | << |ξ|), it is possible
to achieve superior wave propagation and still give a full non-linear CFD solution. In a CFD
simulation, the velocity field can be decomposed in a straightforward manner. To describe the
free surface position, Vukčević chooses to apply (15) to the LS equation to avoid boundedness
problems with other colour functions (e.g.VOF, PF). Particular attention is given to the cases
where the prescribed incident solution pI , UI , ψI does not strictly satisfy the discrete form of the
Navier-Stokes equations, as it is necessary to compensate for the compatibility error [12].
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6. Regular and Irregular Waves

The remaining task in setting up a successful CFD simulation of wave loads consists of prescribing
the incoming sea state.

6.1. Regular Waves

In first attempts, analytical forms such as first-, second- and fifth-order Stokes waves were used,
with optional superposition of current and/or sea bottom boundary layer profiles. Additional
wave forms, such as solitary and c-noidal waves are also implemented.

It was noted that almost all regular waves can be accurately modelled with the fully nonlinear
stream–function wave theory [29], at a negligible computational cost compared to CFD. Since
the method takes into account the presence of a current implicitly, stream–function wave theory
is a preferred choice.

6.2. Wave Focusing and Wave Spectra

While regular wave simulations are already of practical interest, industrial needs regularly require
“design waves” or freak waves, modelled as a linear superposition of regular waves optimised
to give a desired freak wave height. A freak wave assembled from a wave package is created
from a given incoming wave spectrum, by tuning phase shifts over e.g. 100 wave components.
The resulting wave load is then used in further structural analysis: it is therefore essential to
correctly assemble such a wave package and ensure that its shape is preserved at the point of
interest/impact.

To model realistic sea states which adhere to the desired spectrum, a selection of spectra is also
implemented, This includes the Bretschneider, JONSWAP and Pierson-Moskowitz spectrum,
with an additional option of providing an arbitrary list of wave components.

6.3. Higher-Order Spectra

During the propagation of wave spectra using CFD, a distortion of the spectra occurs due to non-
linearities arising from wave-to-wave interaction and wave modulation. These non-linearities are
present in nature as well and play a major role in evolution of the sea state. In order to resolve
these non-linearities outside of the CFD simulation, Gatin et al gatinEtAl2016HOS implemented
and validated a potential Higher-Order Spectrum (HOS) solver. The solver implements a
pseudo-spectral method, solving for the non-linear free surface boundary conditions truncated
at arbitrary (user–defined) non-linear mode. Compared to CFD, the HOS solver is extremely
fast and is used to propagate a realistic (directional) sea state based on the given spectrum,
which can then be screened for realistic freak wave events. The HOS freak wave is superior to
wave focusing since it includes non-linear wave-to-wave interaction and single–wave modulation
and can be accurately transported within the CFD domain. Furthermore, HOS can be used to
calibrate the input spectrum in order to achieved the target spectrum in CFD. The method has
been coupled to CFD, with extensive verification and validation [30].

7. Wave-Induced Loads

Having assembled the CFD solver capable of accurately propagating waves provided via the far-
field implicit relaxation zones, a detailed study of prediction accuracy for wave-induced loads
has been performed. The study starts with the analysis of wave loads on static structures and
then proceeds with floating objects in regular and irregular seas.

7.1. Waves on Static Structures

Vukčević [20] provides a detailed verification and validation study for wave loads on a vertical
surface-piercing cylinder for various wave steepness, providing guidance on mesh resolution in
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the vertical and horizontal direction (with respect to the wave height and length), time-step
size and number of wave encounters necessary to achieve periodicity. The solution is analysed
in terms of wave propagation accuracy without the cylinder and in evaluation of higher-order
forces resulting from wave diffraction from the cylinder.

7.2. Floating and Flexible Structures

Having established good force prediction for a static object, a comprehensive sea-keeping study
for a ship in head and oblique waves was reported at the Tokyo 2015: A Workshop on CFD
in Ship Hydrodynamics [31, 32]. The study starts with the evaluation of steady resistance,
sinkage and trim for the KCS hull [33], followed by the verification and validation study for
the same hull in head waves of various wave lengths and oblique waves in various directions.
For all simulations, mesh resolution and periodic uncertainties are reported, while the time-step
size and hydro-mechanical coupling uncertainties are presented for a representative case. As a
guidance, a mesh of 1.6 million cells provides sea-keeping results with uncertainties of the order
of 4%, with simulation time of approximately 15 minutes per wave encounter period on a small
HPC cluster [34].

7.3. Mooring Systems, Propulsion and Sailing

In order to expand the applicability of the method, handling of a mooring systems and propulsion
modelling is added to the package. Mooring forces are handled via the interface to the 6-DOF
ODE solver, either in terms of linear/torsional spring/damper system, or a direct interface to
external mooring model software. Model performance and technical readiness of such a model
for practical offshore floater design has been reported by Kim et al in [35].

7.4. Green Sea Loads

As the next step, the issue of green water loading is considered. Here, two problems arise. First,
the frequency of occurrence of water-on-deck events is relatively rare and a statistical/screening
method is required to select specific event of sea-keeping in irregular seas. Secondly, a highly
accurate method for the description of free surface on (necessarily) under-resolved meshes is
needed. The focus here is in the surface capturing without numerical smearing errors, needed
to accurately capture water impact on the structure.

Gatin [19] reports a comprehensive procedure for green sea load evaluation, combining the
screening of the HOS spectral solution for irregular seas, sea-keeping simulation for ship motion
for the selected events and highly accurate impact simulation.

In green water impact simulation, the isoAdvector geometric reconstruction scheme by [22]
is used, with remarkable results.

Gatin [36] reports the comparison of numerical and experimental study for the green water
impact on a fixed barge, based on experimental results by Lee et al [37] for 9 incident waves. A
combination of advanced numerical practices produces remarkable good experimental agreement,
shown as a comparison of pressure peaks and pressure force integrals for 10 measuring locations
in Fig. 3.

Error bars on the CFD results in the figure show the combined periodic and mesh uncertainty,
while the experimental error bars show periodic and measuring uncertainty.

8. Full Scale Effects

For a number of years, sea-keeping CFD has been performed at model scale. While this can
be somewhat justified by the lack of full-scale experimental data, the need for full-scale data
by naval architects can no longer be ignored. For CFD studies, dealing with full-scale ships
and floating platforms brings further modelling problems, related with self-propulsion, course-
keeping and full-scale turbulence effect.
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Vukčević et al [38] report the results for a full scale benchmark simulation of a general cargo
carrier used in the 2016 Workshop on ship scale hydrodynamic computer simulation. The CFD

Figure 3. Simulation of Green Sea Impact: pressure peaks (left) and force integrals (right).

model included a full-scale ship hull propelled using the actuator disk propeller model under
free sailing condition. The simulation results were compared with sea trial data. The presented
results show that the self-propulsion point has been reached, predicting the ship speed to 0.3%,
with grid uncertainty of 0.02 knots against the measured mile data, which is remarkable. A test
was subsequently repeated on a different geometry in collaboration with Uljanik shipyard, with
similar results.

9. Statistically Significant Modelling

At the current point of development, simulation of statistically significant results in a prescribed
irregular sea state is coming into focus. Typical simulations will involve global performance
CFD simulations of a moored floating platform or FPSO in a 3-hour storm, or a safe return to

port simulation for a passenger ship.
Safety analysis and novel design criteria, such as designing an optimal ship hull for a given

sea state (as opposed to optimisation for steady resistance in calm seas) will pose new challenges
on robustness, accuracy and speed of simulation in naval hydrodynamics and off-shore CFD.

10. Summary

This paper presents the state-of-the-art of naval hydrodynamics CFD as seen by the author.
While good progress has been made in topics of structural loading by regular waves and steady
resistance of ship hulls, significant challenges remain. A contribution to the applicability
and practical use of CFD in ship and off-shore design will be made by a combination of
improved numerical practices, extensive validation and verification and some improvement in
HPC hardware performance.

This paper reports on improvements in numerical discretisation, free surface capturing,
coupling of simplified far-field wave models with CFD, generation and propagation of regular
and irregular waves and detailed validation and verification of the CFD tools for loads on static
structures, sea-keeping in regular waves, simulation of freak wave impact and green sea loads.
Further challenges lie in the statistical modelling of irregular seas, where significant further work
is needed.
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[17] Hartmann D, Meinke M and Schröder W 2008 J. Comput. Phys. 227 6821–6845
[18] Folch R, Casademunt J and Hernández-Machado A 1999 Phys. Rev. E 60 1724
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