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Abstract. In this work, the floating frame of reference formulation is used to create a flexible 
multibody model of slender offshore structures such as pipelines and risers. It is shown that due 
to the chain-like topology of the considered structures, the equation of motion can be expressed 
in terms of absolute interface coordinates. In the presented form, kinematic constraint equations 
are satisfied explicitly and the Lagrange multipliers are eliminated from the equations. Hence, 
the structures can be conveniently coupled to finite element or multibody models of for example 
seabed and vessel. The chain-like topology enables the efficient use of recursive solution 
procedures for both transient dynamic analysis and equilibrium analysis. For this, the transfer 
matrix method is used. In order to improve the convergence of the equilibrium analysis, the 
analytical solution of an ideal catenary is used as an initial configuration, reducing the number 
of required iterations.   

1. Introduction  
In offshore engineering, many long and slender structures are encountered, such as pipelines and risers. 
These structures are subject of study in a wide variety of applications such as design optimization, 
operability studies, real time control and so on. The fact that such studies require many design 
evaluations, long transient analyses or iteration times that are faster than real time, emphasizes the 
importance of efficient and accurate structural models.  

The most important contribution of this paper is in providing an overview of how various methods, 
that individually are all well-developed and well-documented, can be combined to form a powerful 
solution strategy for the dynamic simulation of slender offshore structures specifically. These various 
methods will be briefly explained here, together with their suitability for offshore applications. 

For the modelling of slender offshore structures, different approaches can be pursued. In particular 
for the purpose of pipe-laying, different methods are explained in textbooks such as [1]. For the 
equilibrium analysis of pipelines, analytical methods based on catenary theory are well-documented. 
The ideal catenary solution can be found in standard textbooks on statics such as [2] and can be expanded 
to an elastic catenary in which the effects of bending stiffness are taken into account [3]. It is still 
common to compare more elaborate models that do not possess an analytical solution, with catenary-
like solutions, as for example shown in [4]. 

In order to study the dynamic behavior of more complicated structural geometries and topologies, 
and the effects of additional phenomena such as contact mechanics, plasticity and hydro-elastic 
coupling, a broad range of numerical models is developed. In rigid multibody dynamics (sometimes 
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referred to as the rigid finite element method) the structure is modeled as a series of rigid bodies 
connected by ideal elastic elements in the form of (torsion) springs. The details of this formulation are 
explained excellently in the standard work by Haug [5] and an application of this method in offshore 
engineering is for instance found in [6].  

Departing from linear finite element formulations, co-rotational finite element formulations have 
been developed to cope with the geometric nonlinearities that result from the large displacements [7]. A 
benefit of this method is the strong relation with linear finite element formulation. However, in particular 
for three-dimensional problems and systems that move at high velocities, many elements may be 
required in order to produce accurate results. This is due to the fact that the effects of quadratic velocity 
terms and elastic deformation are not taken into account in the inertia forces. 

Flexible multibody dynamics is a natural extension of rigid multibody dynamics. Within the 
framework of flexible multibody dynamics, the floating frame of reference formulation is used in this 
work, which is described clearly in the standard work by Shabana [8]. The key concept is that for each 
body the rigid and flexible motion are separated and described by distinct generalized coordinates: a 
floating frame attached to each flexible body describes the body’s rigid motion with respect to an inertial 
coordinate frame, whereas a linear combination of elastic modes describes the local deformations with 
respect to the floating frame. These elastic modes can be obtained directly from a linear finite element 
model of the body, which allows the possibility of well-developed model order reduction techniques. 

The decision to use the floating frame of reference formulation in this work is a fundamental one, as 
it emphasizes the natural possibility of including a pipeline or riser model in a multibody dynamics 
model of the vessel and its on-board equipment and a possible seabed model. How to efficiently include 
hydrodynamic forces into this flexible multibody model using potential theory is described in [9]. 

The efficiency of recursive solution procedures in systems that have a chain-like or tree-like topology 
lies in the fact that the number of operations to solve the equations of motion at a certain iteration is 
only of 𝑂𝑂(𝑛𝑛), with 𝑛𝑛 the size of the system matrix. The majority of the recursive methods is based on 
the successive elimination of bodies from the chain by condensation. An example of this method for the 
purpose of dynamic simulations of space structures is found in [10]. Alternatively, the transfer matrix 
method can be used as a recursive method. The fundamentals of this method for linear elastic problems 
is well explained in [11]. How to extent this method for geometrically nonlinear problems is described 
in [12], in which also a comparison has been made with the condensation method. It is found that the 
transfer matrix method seems to be advantageous for closed-loop systems, as it does not require the use 
of Lagrange multipliers for loop-closure constrains. 

The outline of this paper is as follows: In Sections 2 and 3, the details of the floating frame of 
reference formulations that are necessary for our present purposes are given. This concerns the 
kinematics of an elastic body and the development of the constrained equations of motion of a flexible 
multibody system. In Section 4, it is described how for the particular case of a chain-like structure that 
contains many bodies with two interface points only, the equations of motion can be rewritten in terms 
of the absolute interface coordinates. In this way, the Lagrange multipliers can be eliminated from the 
equations of motion and a formulation in terms of minimal coordinates is obtained. In Sections 5 and 6, 
it is shown how these equations of motion can be solved recursively using the transfer matrix method 
for transient dynamic analysis and equilibrium analysis, respectively. To this end, the equation of motion 
of a single flexible body is rewritten to transfer matrix form after which it is explained how to couple it 
with neighboring bodies. Section 7, summarizes the basics of catenary theory and explains how the 
analytical solution of the ideal catenary can be used in the initialization of equilibrium analysis. A 
numerical example is developed for the demonstration of the equilibrium analysis. The paper is closed 
with the conclusions in section 8. 

2. Kinematics of an elastic body 
Consider a material point 𝐴𝐴 located on a flexible body. A coordinate frame is rigidly attached to this 
material point. The combination of the location of 𝐴𝐴 and the orientation of the coordinate frame located 
in 𝐴𝐴 defines a coordinate system. In this work, this will be referred to as the position of 𝐴𝐴. The position 
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of 𝐴𝐴 can be expressed relative to a coordinate frame in another point 𝐵𝐵 by the (3 × 1) position vector 
𝐫𝐫𝐴𝐴
𝐵𝐵,𝐵𝐵 and the (3 × 3) rotation matrix 𝐑𝐑𝐴𝐴𝐵𝐵. The position vector 𝐫𝐫𝐴𝐴

𝐵𝐵,𝐵𝐵 defines the location of 𝐴𝐴 (lower index) 
with respect to the location of 𝐵𝐵 (second upper index) and its components are expressed in the coordinate 
system of 𝐵𝐵 (first upper index). The rotation matrix 𝐑𝐑𝐴𝐴𝐵𝐵 defines the orientation of 𝐴𝐴 (lower index) with 
respect to the orientation of 𝐵𝐵. The rotation matrix is an orthogonal matrix of the proper type, i.e. its 
determinant is equal to 1 and its transpose equals its inverse: 

 [𝐑𝐑𝐴𝐴𝐵𝐵]𝑇𝑇 = [𝐑𝐑𝐴𝐴𝐵𝐵]−1 = 𝐑𝐑𝐵𝐵
𝐴𝐴 .                                                          (1) 

From the orthogonality property, it follows that the time derivative of the rotation matrix can be 
expressed as: 

 𝐑̇𝐑𝐴𝐴𝐵𝐵 = 𝛚𝛚�𝐴𝐴
𝐵𝐵,𝐵𝐵𝐑𝐑𝐴𝐴𝐵𝐵,                                                                              (2) 

where the overdot operator � ̇ � denotes partial differentiation with respect to time. 𝛚𝛚�𝐴𝐴
𝐵𝐵,𝐵𝐵 is the skew 

symmetric matrix constructed from the angular velocity vector 𝛚𝛚𝐴𝐴
𝐵𝐵,𝐵𝐵. Here, the tilde operator � � � is 

introduced such that when applied on a (3 × 1) vector 𝐚𝐚, it yields a skew symmetric matrix 𝐚𝐚�: 

 𝐚𝐚� = �
0 −𝑎𝑎3 𝑎𝑎2
𝑎𝑎3 0 −𝑎𝑎1
−𝑎𝑎2 𝑎𝑎1 0

�.                                                                  (3) 

Similarly as above, the virtual change or variation in the rotation matrix can be expressed as:  

 𝛿𝛿𝐑𝐑𝐴𝐴𝐵𝐵 = 𝛿𝛿𝛑𝛑�𝐴𝐴
𝐵𝐵,𝐵𝐵𝐑𝐑𝐴𝐴𝐵𝐵,                                                                                         (4) 

where delta operator 𝛿𝛿( ) denotes the variation of its argument.  𝛿𝛿𝛑𝛑𝐴𝐴
𝐵𝐵,𝐵𝐵 is referred to as the virtual 

rotation of 𝐴𝐴 with respect to 𝐵𝐵 with its components expressed in frame 𝐵𝐵. 
In the floating frame of reference formulation, the absolute position of any material point 𝐴𝐴 on a 

flexible body with respect to a fixed inertial reference frame 𝑂𝑂 is decomposed in the absolute position 
of the body’s floating frame, denoted here by 𝑃𝑃, with respect to the inertial frame 𝑂𝑂 and the relative 
position of 𝐴𝐴 with respect to the floating frame 𝑃𝑃. This decomposition is shown graphically in Figure 1.  

 
Figure 1. Decomposition of the absolute position of a material point on a flexible body using the 

floating frame of reference formulation. 
 

With the use of the floating frame, the location of 𝐴𝐴 with respect to 𝑂𝑂 is decomposed as:  

 𝐫𝐫𝐴𝐴
𝑂𝑂,𝑂𝑂 = 𝐫𝐫𝑃𝑃

𝑂𝑂,𝑂𝑂 + 𝐑𝐑𝑃𝑃
𝑂𝑂𝐫𝐫𝐴𝐴

𝑃𝑃,𝑃𝑃.                                                                        (5) 

The orientation of 𝐴𝐴 with respect to 𝑂𝑂 can be decomposed as:  

 𝐑𝐑𝐴𝐴𝑂𝑂 = 𝐑𝐑𝑃𝑃
𝑂𝑂𝐑𝐑𝐴𝐴𝑃𝑃.                                                                                                 (6) 

The body’s flexible behavior is described locally, with respect to the floating frame. Hence, the 
position vector 𝐫𝐫𝐴𝐴

𝑃𝑃,𝑃𝑃 can be expressed as the sum of the position vector of 𝐴𝐴 relative to 𝑃𝑃 on the 
undeformed body 𝐱𝐱𝐴𝐴

𝑃𝑃,𝑃𝑃 and an elastic displacement due to flexibility 𝐮𝐮𝐴𝐴
𝑃𝑃,𝑃𝑃:  

 𝐫𝐫𝐴𝐴
𝑃𝑃,𝑃𝑃 = 𝐱𝐱𝐴𝐴

𝑃𝑃,𝑃𝑃 + 𝐮𝐮𝐴𝐴
𝑃𝑃,𝑃𝑃 .                                                                                           (7) 
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In case of small elastic deformations, the rotation matrix 𝐑𝐑𝐴𝐴𝑃𝑃 can be linearized:  

 𝐑𝐑𝐴𝐴𝑃𝑃 = 𝐈𝐈 + 𝛉𝛉�𝐴𝐴
𝑃𝑃,𝑃𝑃 ,                                                                                                 (8) 

in which only the terms up to the first order in the Taylor series of the rotation matrix are retained. For 
this, the elastic rotation 𝛉𝛉𝐴𝐴

𝑃𝑃,𝑃𝑃 that depends on the gradient of the displacement field must be small. 
Following the theory of linear elasticity, the displacement field 𝐮𝐮𝐴𝐴

𝑃𝑃,𝑃𝑃 can be expressed as a linear 
combination of a finite number of modes: 

 𝐮𝐮𝐴𝐴
𝑃𝑃,𝑃𝑃 = 𝚿𝚿�𝐱𝐱𝐴𝐴

𝑃𝑃,𝑃𝑃�𝐪𝐪𝑒𝑒,                                                                                               (9) 

where 𝚿𝚿 is the matrix of mode shapes and 𝐪𝐪𝑒𝑒 the vector of generalized elastic coordinates.  
The floating frame of reference formulation allows in principle for any combination of modes. For 

bodies with a complex geometry, these modes could be for instance the body’s natural modes as obtained 
using finite element software. Modal order reduction techniques, such as the Guyan-Iron method, Craig-
Bampton method, etc. can be applied to reduce the number of modes. For bodies with a simple beam-
like geometry, standard cubic Hermitian interpolation functions can be used, similarly to the finite 
element method. In fact, it can be shown that in this case the floating frame of reference formulation for 
a body is equivalent to the co-rotational formulation for a finite element [13]. 

In order to obtain an expression for the linear velocity of 𝐴𝐴 with respect to 𝑂𝑂, Equation (5) is 
differentiated with respect to time. Using the appropriate mathematical properties of the rotation matrix 
and skew symmetric matrix, this can be rewritten to:  

 𝐫̇𝐫𝐴𝐴
𝑂𝑂,𝑂𝑂 = 𝐫̇𝐫𝑃𝑃

𝑂𝑂,𝑂𝑂 − 𝐑𝐑𝑃𝑃
𝑂𝑂𝐫𝐫�𝐴𝐴

𝑃𝑃,𝑃𝑃𝐑𝐑𝑂𝑂
𝑃𝑃𝛚𝛚𝑃𝑃

𝑂𝑂,𝑂𝑂 + 𝐑𝐑𝑃𝑃
𝑂𝑂𝐫̇𝐫𝐴𝐴

𝑃𝑃,𝑃𝑃.                                                             (10) 

For the angular velocity of 𝐴𝐴 with respect to 𝑂𝑂 holds: 

 𝛚𝛚𝐴𝐴
𝑂𝑂,𝑂𝑂 = 𝛚𝛚𝑃𝑃

𝑂𝑂,𝑂𝑂 + 𝐑𝐑𝑃𝑃
𝑂𝑂𝛚𝛚𝐴𝐴

𝑃𝑃,𝑃𝑃.                                                                                 (11) 

Equation (10) and (11) are combined to a compact notation: 

 𝐯𝐯𝐴𝐴
𝑂𝑂,𝑂𝑂 = [𝐑𝐑𝑃𝑃

𝑂𝑂]�𝐫𝐫�𝐴𝐴
𝑃𝑃,𝑃𝑃�

𝑇𝑇[𝐑𝐑𝑂𝑂
𝑃𝑃 ]𝐯𝐯𝑃𝑃

𝑂𝑂,𝑂𝑂 + [𝐑𝐑𝑃𝑃
𝑂𝑂]𝐯𝐯𝐴𝐴

𝑃𝑃,𝑃𝑃,                                                                     (12) 

in which the (6 × 1) velocity vectors 𝐯𝐯 contain both the linear and angular velocity vectors, [𝐑𝐑] denotes 
a (6 × 6) compound rotation matrix and [𝐫𝐫�]𝑇𝑇 is defined as: 

 [𝐫𝐫�]𝑇𝑇 ≡ �𝟏𝟏 𝐫𝐫�𝑇𝑇
𝟎𝟎 𝟏𝟏

�,                                                                                               (13) 

where sub- and superscripts are omitted above for brevity. The expression for the virtual displacement 
of 𝐴𝐴 relative to 𝑂𝑂 can be written in a similar form as Equation (12).  

3. Equations of motion in the floating frame of reference formulation 
The equation of motion of a flexible body is derived using Hamilton’s principle:  

 ∫ (𝛿𝛿𝛿𝛿 − 𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿)𝑡𝑡2
𝑡𝑡1

𝑑𝑑𝑑𝑑 = 0,                                                                      (14) 

where 𝛿𝛿𝛿𝛿 is the virtual kinetic energy, 𝛿𝛿𝛿𝛿 is the virtual internal elastic energy and 𝛿𝛿𝛿𝛿 is the virtual 
work by externally applied body forces and surface tractions. Substitution of the appropriate kinematic 
relations in the expressions for the virtual energies in Equation (14) and using the argument that 
Hamilton’s principle must hold for arbitrary intervals [𝑡𝑡1, 𝑡𝑡2] and for all virtual displacements, the 
floating frame of reference equation of motion in standard form is obtained:  

 �𝐌𝐌𝑟𝑟 𝚪𝚪𝑇𝑇
𝚪𝚪 𝐌𝐌𝑒𝑒

� �𝐚𝐚𝑃𝑃
𝑂𝑂,𝑂𝑂

𝐪̈𝐪𝑒𝑒
� + 𝐐𝐐𝑣𝑣 + �𝟎𝟎 𝟎𝟎

𝟎𝟎 𝐊𝐊𝑒𝑒
� � 𝟎𝟎𝐪𝐪𝑒𝑒

� = 𝐐𝐐𝑎𝑎,                                                             (15) 

where 𝐚𝐚𝑃𝑃
𝑂𝑂,𝑂𝑂 is the absolute acceleration of the floating frame. 𝐌𝐌𝑟𝑟 is the rigid body mass matrix, 𝐌𝐌𝑒𝑒 the 

mass matrix due to elastic modes and 𝚪𝚪 are the modal participation factors that couple rigid and elastic 
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motion. 𝐊𝐊𝑒𝑒 is the generalized stiffness matrix due to elastic modes. The vector 𝐐𝐐𝑣𝑣 contains the inertia 
forces that are quadratic in the velocity and 𝐐𝐐𝑎𝑎 contains the externally applied generalized forces and 
modal forces.  

In a multibody system, the equations of motion of all individual bodies can be combined and written 
in the following compact form:  

 𝐌𝐌𝐪̈𝐪 = 𝐐𝐐,                                                                                     (16) 

in which the quadratic velocity forces and elastic forces are contained in 𝐐𝐐, as well as the unknown 
constraint forces that result from kinematic constraints between distinct bodies or between a body and 
the fixed world. In order to obtain a solvable set of equations, the corresponding kinematic constraint 
equations need to be taken into account. Holonomic constraint equations are considered in the following 
form:  

 𝚽𝚽 = 𝟎𝟎.                                                                                           (17) 

Differentiation with respect to time twice yield the acceleration equation of the constraints: 
 𝚽𝚽𝑞𝑞𝐪̈𝐪 = 𝛄𝛄,                                                                                                (18) 

where 𝚽𝚽𝑞𝑞  is the Jacobian matrix of the constraint equations. The combination of Equation (16) and (18) forms the 
constraint equations of motion in Lagrange multiplier form, which is of the differential-algebraic type: 

 �
𝐌𝐌 𝚽𝚽𝑞𝑞

𝑇𝑇

𝚽𝚽𝑞𝑞 𝟎𝟎 � �𝐪̈𝐪
𝛌𝛌
� = �𝐐𝐐𝛄𝛄�,                                                                          (19) 

in which the constraint forces are removed from 𝐐𝐐 and 𝛌𝛌 are the Lagrange multipliers. 

4. Transformation to interface coordinates 
The constrained equations of motion in Lagrange multiplier form Equation (19) are valid for any flexible 
multibody system subjected to holonomic constraints. In co-rotational finite element formulations, no 
Lagrange multipliers are present. This is due to the fact that the equations of motion are written in terms 
of the absolute nodal coordinates. Since constrains are applied at the nodes, they result in a direct relation 
between nodal coordinates or they prescribe nodal coordinates to have a certain value.  

Based on co-rotational finite element formulations, it is observed that it is possible to eliminate the 
Lagrange multipliers from the floating frame of reference equation of motion, if it is possible to establish 
a coordinate transformation from the floating frame of reference coordinates 𝐪𝐪, to the interface 
coordinates 𝐪𝐪𝐼𝐼 corresponding to the interface points at which the kinematic constraint equations are 
applied.  

In general, such a coordinate transformation is not straightforward. Previously, it was established by 
locating the floating frame in an interface point [14] or by assuming the position of floating frame to be 
the weighted average of the interface coordinates [15]. More generally, this coordinate transformation 
can be established by demanding zero elastic deformation at the location of the floating frame [13].   

However, the bodies that form slender offshore structures in a typical chain-like topology, often have 
two interface points only: connecting the body to its two immediate neighbors. In this specific case, the 
desired coordinate transformation can be established easily for the case that the floating frame coincides 
with one of the interface points, provided that the elastic behavior is described by an appropriate set of 
modes. To this end, consider a flexible body with interface points 𝑖𝑖 and 𝑗𝑗. Let the body’s floating frame 
coincide with interface point 𝑖𝑖. Using Equation (12), the absolute velocity of interface point 𝑗𝑗 can be 
expressed as: 

 𝐪̇𝐪𝑗𝑗
𝑂𝑂,𝑂𝑂 = [𝐑𝐑𝑖𝑖

𝑂𝑂]�𝐫𝐫�𝑗𝑗
𝑖𝑖,𝑖𝑖�

𝑇𝑇
�𝐑𝐑𝑂𝑂

𝑖𝑖 �𝐪̇𝐪𝑖𝑖
𝑂𝑂,𝑂𝑂 + [𝐑𝐑𝑖𝑖

𝑂𝑂]𝐯𝐯𝑗𝑗
𝑖𝑖,𝑖𝑖 .                                                                   (20) 

In the specific case that the elastic displacement field is described using the 6 static interface modes 
of a Craig-Bampton reduction, the local velocities 𝐯𝐯𝑗𝑗

𝑖𝑖,𝑖𝑖 equal the time derivative of the generalized elastic 
coordinates 𝐪̇𝐪𝑒𝑒. This is an immediate consequence of the fact that a static interface mode evaluated at 
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the corresponding interface point equals 1. For this case, it is possible to use Equation (20) to express 
the time derivative of the local in terms of the absolute interface velocities: 

 𝐪̇𝐪𝑒𝑒 = −�𝐫𝐫�𝑗𝑗
𝑖𝑖,𝑖𝑖�

𝑇𝑇
�𝐑𝐑𝑂𝑂

𝑖𝑖 �𝐯𝐯𝑖𝑖
𝑂𝑂,𝑂𝑂 + �𝐑𝐑𝑂𝑂

𝑖𝑖 �𝐯𝐯𝑗𝑗
𝑂𝑂,𝑂𝑂 .                                                                        (21) 

Since the absolute coordinates of the floating frame of reference coincide with the absolute nodal 
coordinates of node 𝑖𝑖, the following coordinate transformation is obtained on the velocity level:  

𝐪̇𝐪 = 𝐀𝐀𝐪̇𝐪𝐼𝐼 ,       𝐀𝐀 ≡ �
𝟏𝟏 𝟎𝟎

−�𝐫𝐫�𝑗𝑗
𝑖𝑖,𝑖𝑖�

𝑇𝑇
�𝐑𝐑𝑂𝑂

𝑖𝑖 � �𝐑𝐑𝑂𝑂
𝑖𝑖 �� .                                                                           (22) 

Differentiating Equation (22) with respect to time yields the coordinate transformation on the 
acceleration level: 

 𝐪̈𝐪 = 𝐀𝐀𝐪̈𝐪𝐼𝐼 + 𝐀̇𝐀𝐪̇𝐪𝐼𝐼.                                                                                              (23) 

Applying this coordinate transformation on the equations of motion Equation (16) results in: 

 𝐌𝐌� 𝐪̈𝐪𝐼𝐼 = 𝐐𝐐�,                                                                                                      (24) 

in which 𝐌𝐌�  is the transformed mass matrix. 𝐐𝐐� is the corresponding generalized force vector in which 
also the squared velocity term due to the transformation Equation (23) is included. 

With the equations of motion in the form of Equation (24), constrains between bodies can be applied 
direcly, eliminating dependent generalized coordinates from the equations. The resulting equations of 
motion are expressed in the minimal coordinates, i.e. the number of equations of motion equals the 
number of independent generalized coordinates.  

For the sake of completeness, it is mentioned that 𝐌𝐌�  is not constant, but depends on both the rotation 
matrix as well as the body’s elastic deformation. For small deformations, it is often reasonable to neglect 
the dependency on the elastic deformation. In [12] it is shown that under this assumption 𝐌𝐌�  can be 
related to the body’s finite element mass matrix 𝐌𝐌𝐹𝐹𝐹𝐹𝐹𝐹 that is condensed to the interface points:  

 𝐌𝐌� �
𝐮𝐮=𝟎𝟎

= [𝐑𝐑𝑖𝑖
𝑂𝑂]𝐌𝐌𝐹𝐹𝐹𝐹𝐹𝐹�𝐑𝐑𝑂𝑂

𝑖𝑖 �.                                                                       (25) 

Note that in co-rotational finite element formulations, the global mass matrix is also assembled by 
rotating the local finite element mass matrices, which are constant, to the global frame. In the floating 
frame of reference formulation, as presented in this work, the dependency of the mass matrix on the 
elastic deformation can, but does not need to be neglected: the terms follow naturally from the 
formulation. Also the quadratic velocity terms are still included in 𝐐𝐐�, these terms are typically not taken 
into account in a co-rotational finite element formulation. 

5. Transfer matrix method for dynamic analysis  
As a consequence, of the chain-like topology of many offshore structures, recursive solution procedures 
are well-suited for dynamic simulations. In this work, the transfer matrix method is used for solving the 
geometrically nonlinear equations of motion. To this end, consider the equation of motion Equation (16) 
for a single body, expressed in its interface coordinates, in the following partitioned form:  

 �
𝐌𝐌𝑖𝑖𝑖𝑖 𝐌𝐌𝑖𝑖𝑖𝑖
𝐌𝐌𝑗𝑗𝑖𝑖 𝐌𝐌𝑗𝑗𝑗𝑗

� �
𝐪̈𝐪𝑖𝑖
𝐪̈𝐪𝑗𝑗
� = �

𝐅𝐅𝑖𝑖
𝐅𝐅𝑗𝑗
� + �

𝐐𝐐𝑖𝑖
𝐐𝐐𝑗𝑗
�,                                                                            (26) 

where 𝐅𝐅𝑖𝑖 and 𝐅𝐅𝑗𝑗 denote the constraint forces at interface points 𝑖𝑖 and 𝑗𝑗 respectively and are separated 
from the remaining right hand side forces. In the transfer matrix method, Equation (26) is rewritten such 
that the acceleration and interface force at 𝑗𝑗 are expressed in terms of the acceleration and interface force 
at 𝑖𝑖:  

�
𝐪̈𝐪𝑗𝑗
𝐅𝐅𝑗𝑗
� = �

𝐌𝐌𝑖𝑖𝑖𝑖 𝟎𝟎
𝐌𝐌𝑗𝑗𝑗𝑗 −𝟏𝟏�

−1

�
−𝐌𝐌𝑖𝑖𝑖𝑖 𝟏𝟏
−𝐌𝐌𝑗𝑗𝑗𝑗 𝟎𝟎� �

𝐪̈𝐪𝑖𝑖
𝐅𝐅𝑖𝑖
� + �

𝐌𝐌𝑖𝑖𝑖𝑖 𝟎𝟎
𝐌𝐌𝑗𝑗𝑗𝑗 −𝟏𝟏�

−1

�
𝐐𝐐𝑖𝑖
𝐐𝐐𝑗𝑗
�.                                                       (27) 
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This is of the form: 

 𝐳𝐳𝑗𝑗 = 𝐓𝐓𝑖𝑖
𝑗𝑗𝐳𝐳𝑖𝑖 + 𝐳𝐳�𝑖𝑖

𝑗𝑗,                                                                                          (28) 

where 𝐳𝐳𝑖𝑖 and 𝐳𝐳𝑗𝑗 are the so-called state vectors of interface points 𝑖𝑖 and 𝑗𝑗 respectively, 𝐓𝐓 is the transfer 
matrix from 𝑗𝑗 with respect to 𝑖𝑖 and 𝐳𝐳� is an internal state vector due to elastic and quadratic velocity 
forces.  

When the equation of motion of each flexible body in the chain is written in the form Equation (28), 
the bodies can be coupled by considering the appropriate coupling conditions. For example, in case of 
a rigid coupling, the accelerations of the connected interface points are equal and the interface forces 
are equal but of opposite sign, following Newton’s third law. Mathematically, such a coupling can be 
realized by a permutation matrix 𝐏𝐏:  

 𝐳𝐳(𝑘𝑘+1) = 𝐏𝐏𝐳𝐳(𝑘𝑘),      𝐏𝐏 ≡ �𝟏𝟏 𝟎𝟎
𝟎𝟎 −𝟏𝟏�,                                                                       (29) 

where 𝐳𝐳(𝑘𝑘) and 𝐳𝐳(𝑘𝑘+1) are the state vectors of the interface point that bodies 𝑘𝑘 and 𝑘𝑘+1 have in common. 
In this way, the state vector of last interface point of the chain, say 𝐳𝐳𝑁𝑁 can ultimately be related to the 
state vector of the first interface point 𝐳𝐳1: 

 𝐳𝐳𝑁𝑁 = 𝐓𝐓1𝑁𝑁𝐳𝐳1 + 𝐳𝐳�1𝑁𝑁.                                                                                (30) 

At this point, the boundary conditions at both ends of the chain can be applied. In the case of pipe-
laying one could for instance prescribe zero deformation at the location of the sea bed, prescribe the 
water depth and the force applied by the tensioner system. Then, from Equation (30) the unknown 
displacements and constraint forces at both ends of the chain are determined. All intermediate states can 
be solved recursively by back substitution. The solving of all state vectors is then followed by numerical 
time integration to the next time step.  

Because the transfer matrix method is a recursive solution procedure that requires 𝑂𝑂(𝑛𝑛) 
computations, it is potentially a very efficient algorithm. A benefit of the transfer matrix method as 
presented in this work over many other recursive solution procedures, is that no knowledge of boundary 
conditions is required to set up the recursive equations. In particular, no loop-closure constraints are 
required in order to solve structures with a closed-loop topology. Such a loop-closure constraint would 
be required in a condensation-based recursive method if one prescribes the water depth. 

6. Transfer matrix method for equilibrium analysis 
Analyses that are performed with the purpose of e.g. operability studies, require transient dynamic 
simulations. In order to prevent unwanted start-up behavior, the transient simulation is started from a 
static equilibrium configuration. The equilibrium equations of a single body are obtained directly by 
removing all inertia related terms from the left hand side of Equation (15). Also for this static case, the 
assembly of the equilibrium equations of the entire system can be done using Lagrange multipliers. Due 
to the geometric nonlinearities on the position level, it is not possible to establish an explicit coordinate 
transformation to interface coordinates. As a consequence, it is not possible develop a state transfer 
matrix on the position level.  

It is common however to solve nonlinear equilibrium equations using a total Lagrangian or updated 
Lagrangian formulation, in which the equations are solved iteratively using a Newton-Raphson scheme. 
Within each iteration, the incremental change in the degrees of freedom Δ𝐪𝐪 is solved from a set of 
linearized equations in the tangent space of the equilibrium equations. For increment 𝑡𝑡 + Δ𝑡𝑡 these 
equations can be written as [16]:  

 𝐊𝐊𝑡𝑡  Δ𝐪𝐪 = 𝐐𝐐(𝑡𝑡+Δ𝑡𝑡) −𝐐𝐐𝑒𝑒
(𝑡𝑡),                                                                         (31) 

where 𝐊𝐊𝑡𝑡 is the tangential stiffness matrix, which consists of the material stiffness matrix, as determined 
in Equation (15), as well as the geometric stiffness matrix that follows from taking the variation of the 
nonlinear equilibrium equations. The right hand side is the difference between the externally applied 
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forces of the next iteration 𝐐𝐐(𝑡𝑡+Δ𝑡𝑡) and the internal elastic forces of the current iteration 𝐐𝐐𝑒𝑒
(𝑡𝑡). If at the 

current iteration, the nonlinear equations are solved exactly, the right hand side equals the incremental 
change in the externally applied forces Δ𝐐𝐐. However, in the notation used in Equation (31), a possible 
residual at the current iteration is taken into account during the next iteration.  

The linearized equilibrium equation of the entire structure can be assembled using Equation (31) for 
each body in the chain. At this point it is possible to set up a transfer matrix method for solving the 
equilibrium equations. In this procedure, a state vector would consists of the position of an interface 
point and the interface forces. The remainder of the solution procedure is identical as the procedure for 
a transient dynamic simulation. 

In order to determine the equilibrium configuration of an offshore pipeline that is suspended from a 
vessel and supported by the sea bed, an initially straight pipe can be considered. This pipe can be 
incrementally loaded, solving Equation (31) at each load increment, until equilibrium is reached. 

To demonstrate this procedure, a numerical example is performed on pipe that is subjected to its own 
weight in downward direction and a vertical tip force equal to its own weight in upward direction. The 
pipe is divided into 10 bodies. The total length of the pipe is 1 (m).  The cross section has radius 0.01 
(m) and the wall thickness is 0.001 (m). The Young’s modulus is 70 (GPa). The applied weight per unit 
length is 100 (kN/m). This load is such that the deformation of the pipe will be large, such that 
geometrical nonlinear effects need to be included. The pipe is initially straight and the equilibrium 
configuration is obtained using 5 equal load increments. Within each load increment, iterations are 
performed until convergence is reached. Figure 2 shows the converged equilibrium configurations of 
each load increment. 

7. Equilibrium analysis using catenary theory 
To solve the equilibrium configuration of a suspended pipeline from a pipe that is initially straight, large 
displacements are required. As a consequence, the use of load increments and the Newton-Raphson 
procedure are required, which may need quite some iterations before convergence is reached. It could 
be said that an initially straight pipe is a very poor initial estimation of the equilibrium configuration. 

It is found that the equilibrium configuration of a pipe line is reasonable well approximated by the 
analytical solution from catenary theory. For instance, in [4] results are presented that in case for a J-lay 
process show the striking similarity between the ideal catenary solution and the pipeline. In order to 
benefit from the fact that the catenary theory yields an analytical solution, many references can be found 
in which this theory is expanded to include effects such as longitudinal straining, finite bending stiffness 
and inertia effects. In this work, this semi-analytical approach is not followed on purpose, in order to 
emphasize the possibility to include the pipeline into a multibody simulation.  

 
Figure 2. Equilibrium configuration of the pipe using 5 load increments.   

 

However, using the ideal catenary solution for the initialization of the equilibrium analysis could 
greatly reduce the effort required in this stage. The nonlinear differential equation of a standard catenary 
is [2]: 
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 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

= 𝜌𝜌𝜌𝜌𝜌𝜌
𝑇𝑇0
�1 + �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
2

,                                                                                        (32) 

in which 𝑦𝑦(𝑥𝑥) is the shape of the catenary, 𝜌𝜌𝜌𝜌𝜌𝜌 the weight of the cable per unit length and 𝑇𝑇0 the 
constant horizontal component of the pretension in the cable. The solution of Equation (32) is: 

 𝑦𝑦(𝑥𝑥) = 𝑇𝑇0
𝜌𝜌𝜌𝜌𝜌𝜌

�cosh �𝜌𝜌𝜌𝜌𝜌𝜌
𝑇𝑇0
𝑥𝑥� − 1�.                                                                         (33) 

At every position, the slope of the catenary can be determined from:  

 tan(𝜃𝜃) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.                                                                                               (34) 

The horizontal component of the tension force equals 𝑇𝑇0 at every position. The vertical component 
of the tension force equals the weight of the cable up to that point, which can be expressed as:  

𝑇𝑇𝑦𝑦(𝑥𝑥) = 𝑇𝑇0 sinh �𝜌𝜌𝜌𝜌𝜌𝜌
𝑇𝑇0
𝑥𝑥�.    (35) 

The internal bending moment in the catenary is zero by definition. For a given water depth and 
pretension 𝑇𝑇0, the solution of the catenary is determined. Then, Equation (32) to (34) are evaluated at 
the interface points to establish the state vectors at these interface points. These state vectors are used as 
an initial guess in the iterative Newton-Raphson procedure that solves the equilibrium configuration of 
the actual multibody system. 

Also in the case of the numerical example used in the previous section, it is found that the catenary 
solution is close to the equilibrium configuration of the pipe. To demonstrate this, Figure 3 shows the 
final equilibrium configuration of the pipe again (solid line), together with the analytical catenary 
solution that passes through the end point (dashed line). The close resemblance of the catenary to the 
pipe line suggests that it would indeed be beneficial to use the catenary solution as an initial guess in the 
equilibrium analysis of the pipeline. In this way, the use of load increments could be prevented and only 
few Newton-Raphson iterations are required. 
 

 
Figure 3. Resemblance of the ideal catenary (dashed line) with the pipe’s equilibrium configuration 

(solid line).  

8. Conclusion 
In this work, thoughts have been presented on how to model slender offshore structures using the 
floating frame of reference formulation, suitable for the fast simulation of the structure’s flexible 
multibody dynamics. Starting with the standard floating frame of reference formulation, a coordinate 
transformation to absolute interface coordinates is applied in order to remove the Lagrange multipliers 
from the equations of motion. This allows for the use of potentially efficient recursive solution 
procedures, such as the transfer matrix method. For the equilibrium analysis, it is explained how the use 
of the ideal catenary solution could be used to prevent the use of load increments. In this way, the number 
of iterations can be reduced and convergence improved. 

Future work is aimed on the validation of the proposed approach with simulations published in 
literature. In this, the effect of using a recursive scheme in combination with the use of the ideal catenary 
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for the equilibrium analysis on computation times will be investigated. Once reliable results have been 
obtained, a pipeline model can be coupled to a multibody dynamics model of the pipe-laying vessel. At 
this point, full hydrodynamic coupling can be included. In this way the transient dynamic behavior of 
the combined system subjected to various sea-states can be studied with great numerical efficiency. 

References 
[1] Palmer A C  and Kind R A, 2008, Subsea Pipeline Engineering: 2nd Ed. (Penn Well Books)  
[2] Meriam J L and Kraige L G, 2008 Engineering Mechanics Statics, 6th Ed. (John Wiley & Sons) 
[3] Wang C Y and Watson L T 1982 The elastic catenary Int. J. Mech. Sci. 24(6) pp. 349-57 
[4] Jensen G A, Säfström N, Nguyen T D and Fossen T I 2010 A nonlinear PDE formulation for 

offshore vessel pipeline installation Ocean Eng. 37 pp. 365-77 
[5] Haug E J 1989 Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods 

(Prentice Hall) 
[6] Szczotka M 2010 Pipe laying simulation with an active reel drive Ocean Eng. 37 pp. 539-48 
[7] de Vries F H, Geijselaers H J M and van den Boogaard A H 2017 A nonlinear dynamic corotational 

finite element model for submerged pipes 1st Conf. of Computational Methods in Offshore 
Technology, COTech (Stavanger) 

[8] Shabana A A 1998 Dynamics of Multibody Systems (Cambridge University Press) 
[9] Schilder J P, Ellenbroek M H M, Hagmeijer R and de Boer 2016 A Hydro-elasticity in flexible 

multibody dynamics Int. Conf. on Noise and Vibration Engineering (Leuven), ISMA 
[10] Ellenbroek M H M 1994 On the fast simulation of multibody dynamics of flexible space structures 

(PhD thesis: University of Twente) 
[11] Pestel E C and Leckie F A 1963 Matrix Methods in Elasto Mechanics: 1st Ed.(McGraw-Hill) 
[12] Schilder J P, Ellenbroek M H M and de Boer A 2017 Recursive solution procedures for flexible 

multibody systems: comparing condensation and transfer matrix methods ECCOMAS Thematic 
Conf. on Multibody Dynamics (Prague) 

[13] Ellenbroek M H M and Schilder J P 03-05-2017 On the use of absolute interface coordinates in 
the floating frame of reference formulation for flexible multibody dynamics Multibody Sys. Dyn.  

[14] Cardona A and Géradin M 1991 Modelling of super elements in mechanism analysis Int. J. Numer. 
Methods Eng. 32 pp. 1565-96 

[15] Cardona A 2000 Super elements modelling in flexible multibody dynamics Multibody Sys. Dyn. 4 
pp. 245-66 

[16] de Borst R, Crisfield M A, Remmers J J C and Verhoosel C V 2012 Non-linear Finite Element 
Analysis of Solids and Structures: 2nd Ed. (John Wiley & Sons. 

 


