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Abstract: The influences of laser pulse energy and impact time on high strain rate response of 

7055 aluminum alloy subject to square-spot laser shock peening (SLSP) were investigate. 

Microstructural evolution was characterized by OM, SEM and TEM. Microhardness 

distribution and in-depth residual stress in 15 J with one and two impacts and 25 J with one and 

two impacts were analyzed. Results show that the original rolling structures were significantly 

refined due to laser shock induced recrystallization. High density of microdefects was 

generated, such as dislocation tangles, dislocation wall and stacking faults. Subgrains and 

nanograins were induced in the surface layer, resulting in grain refinement in the near surface 

layer after SLSP. Compressive residual stresses with maximum value of more than -200 MPa 

and affected depths of more than 1 mm can be generated after SLSP. Impact time has more 

effectiveness than laser pulse energy in increasing the magnitude of residual stress and 

achieving thicker hardening layer. 

1. Introduction 

Laser shock peening (LSP), also called laser shock processing, is an innovative surface treatment 

technique, which has been widely employed to enhance fatigue, corrosion and wear resistance of 

metallic components served in aerospace engineering [1-3]. Comparing to shot peening (SP), the 

compressive residual stress layer introduced by LSP is 2-5 times thicker than that generated by SP [4]. 

LSP applies a high power density (in GW cm-2 range), ultra-short duration (tens of nanoseconds) pulse 

laser to the surface of metallic materials, forming plasma that reaches a temperature higher than 

10000°C and generating a high pressure shock wave (in GPa range). The interaction between shock 

wave and target material will generate high density of microdefects, induce grain refinement and 

modify near surface residual stress field [5]. 

According to the shape of laser spot, LSP can be divided into circular-spot laser shock peening 

(CLSP) and square-spot laser shock peening (SLSP) [6]. In a typical SLSP process, laser energy 

distributes homogeneously in the square spot after adjusting spot shape using beam homogenizer. 

SLSP can treat a large area effectively with the overlapping ratio less than 10% [7]. Cao et al. reported 

that surface morphology produced by square laser spots was smoother than that produced by circular 

spots [8]. In addition, square laser spot can effectively avoid the phenomenon of residual stress hole. 

Hu et al. studied the non-homogeneity of residual stress field and found that the residual stress drop in 

a square laser spot was less severe than that in a circular laser spot [9]. However, little open literature 

pays attention to the microstructural evolution, mechanical property and experimental residual stress 

field of materials under SLSP.  
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In this study, SLSP was carried out to investigate high strain rate response of 7055 aluminum alloy, 

focusing on microstructural evolution, microhardness distribution and residual stress field. Different 

laser pulse energy and impact times were examined to offer a better understanding of material 

response under SLSP. It is believed that this study can provide a new insight for widening LSP 

technique in both scientific and industrial application. 

2. Experiments 

2.1. Experimental Procedure 

In this study, 7055 aluminum alloy was selected in this work with a full chemical composition listed in 

Table.1. It is initially developed by Alcoa in 1980s, and is mainly applied as envelope of horizontal 

tail and other parts. The samples were cut into a rectangular plate with dimensions of 50 mm×30 

mm×5 mm (length × width × thickness). Before SLSP, all samples were first ground with SiC paper 

from 150 # to 2000 # and then rinsed with deionized water by ultrasonic vibration. Shortly after the 

preparation, SLSP was performed in water confinement using a Q-switched Nd:YAG laser operating 

in a wavelength of 1064 nm, pulse width of 15 ns and a repetitive frequency of 1 Hz. The focused 

laser presents a 4 mm square spot after beam homogenization. All specimens were protected from the 

thermal effects of SLSP by a 100 μm aluminum foil (made by 3M). Two kinds of pulse energies of 15 

and 25 J and impact time of one and two were selected for SLSP experiments. The laser path was a 

zigzag covering an area of 40 mm × 20 mm. The overlapping rate (ov %) represents percentage of the 

overlapped length in center distance of two adjacent laser spot. Thereby, an overlapping rate of 15% 

was adopted. The laser path and overlapping illustration are shown in Figure 1.  

 

Table 1. Chemical compositions of 7055 aluminum alloy (wt %) 

Cu Mg Zn Zr Fe Mn Si Al 

2.0 - 2.6 1.8 - 2.3 7.6 - 8.4 0.08 - 0.25 ≤0.15 ≤0.05 ≤ 0.10 Bal. 

 

 

Figure 1. Laser path illustrating an overlapping rate of 15%. 

2.2. Material Characterization  

Optical Microscope (ASA1, Zeiss) and Scanning Electron Microscopy (SEM) were used to observe 

microstructure features of samples before and after SLSP. Prior to the observation, cross section of 

each sample was ground to 2500 # and then mechanically polished before etched by Keller's reagent 

(95 mL H2O, 2.5 mL HNO3, 1.5 mL HCl and 1 mL HF). In addition, Polarized Light Microscopy 

(PLM) was employed to reveal the grain structure after anodic oxidation with Barker's reagent (97.5 

mL H2O, 2.5 mL HBF4). Transmission electron microscope (TEM, JEM-2100, JEOL), operated at 200 

kV, was employed to investigate microstructural evolution of samples after SLSP. The sample was cut 

into a 0.5 mm thickness sheet and afterwards mechanically ground and polished down to about 100 
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μm thickness. The 100 μm sheet was punched out to 3 mm diameter discs, followed by ion-milling by 

Ar + bombardment with proper incident angles.  

Micro-vickers hardness tester (FUTURE-TECH, FM-800) was adopted to study the variety of 

microhardness from SLSP treated surface down to the base metal with a step distance of 100 μm, test 

weight of 200 g, and dwell time of 10 s. To eliminate the deviation, each measure was repeated for 

three times and the average values were presented in this study. Prism residual stress measurement 

system based on incremental hole drilling method was applied to measure residual in the depth 

direction of specimen before and after SLSP. It is a destructive residual stress measurement. Residual 

stresses were measured from the surface to a depth of 1 mm. 

3. Results and Discussion 

3.1. Microstructure 

Figure 2 presents PLM and SEM images of the sample before SLSP, which show clear rolling 

structures. Longish grains in both PLM and SEM images are confirmed. 

 

 

Figure 2. Microstructure before SLSP. (a) OM image and (b) SEM image. 

 

Figure 3 and Figure 4 illustrate PLM and SEM images of the samples after SLSP, respectively. 

Figure 3(a) and (b) expound microstructural evolution under 15 J with one and two impacts. The 

continuous longish grains broke into intermittent smaller grains and further into randomly oriented 

fragmentary grains after one and two impacts. Similar results were reported by Trdan et al. who found 

randomly distributed smaller grains on the LSPed surface layer and oriented longish grains in the 

center of sample [10] Figure 3(c) and (d) show microstructural evolution under 25 J with one and two 

impacts. The density and the length of such longish grains decreased when increasing laser energy 

from 15 to 25 J. In addition, recrystallization of longish grains can also be observed. Randomly 

oriented net-like grains can be discovered after 25 J SLSP with two impacts. Lu et al. point out that a 

severe plastic deformation layer was generated near the top surface during LSP, and the grains in the 

severe plastic deformation layer were significantly refined [11]. 
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Figure 3. Microstructural evolution after SLSP under PLM. (a) 15 J with one impact; (b) 15 J with 

two impacts; (c) 25 J with one impact and (d) 25 J with two impacts. 

 

Figure 4 shows SEM images, which confirm the presence of recrystallized grains in samples after 

SLSP. Longish grains still can be observed in Figure 4(a). However, the longish grain broke into 

intermittent smaller grains with the grain sizes varying from 2 μm to 20 μm, as shown in Figure 4(b), 

when the sample was subject to 15 J SLSP. When the samples are treated by 25 J with one and two 

impacts, small equiaxed grains can be obtained. The average grain in Figure 4(d) is about 5-8 μm. 

 

 

Figure 4. Microstructural evolution after SLSP under SEM. (a) 15 J with one impact; (b) 15 J with 

two impacts; (c) 25 J with one impact and (d) 25 J with two impacts. 
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Hence, it can be concluded from both PLM and SEM images that SLSP is an effective method to 

generate refined grains in the treated region, which can be favorable to the improvement on the fatigue 

life of 7055 aluminum alloy. 

Figure 5 shows typical TEM images of samples treated by SLSP with laser energy of 15 J. From 

Figure 5(a), it can be clearly observed that a large number of microdefects randomly distributed in the 

grain, such as dislocation tangles and dislocation walls. However, no obvious observation of 

dislocation lines, which can be attribute that the surface layer was severely deformed during the SLSP 

process that dislocation lines slipped and multiplicated into dislocation tangles and wall [12]. Figure 

5(b) present the image taken from the zone [A] in Figure 5(a). Stacking faults can be discovered in the 

edge of dislocation tangle and subgrain boundary between the dislocation tangle and original grain can 

also be detected. Figure 5(c) is the high-resolution transmission electron microscopy (HRTEM) image 

taken from ellipse [B] in Figure 5(b). Typical stack faulting structure spacing 0.606 nm can be 

observed in region [I] and periodic dislocation of atom arrangement in region [II] spaced 0.202 nm. 

Figure 5(d) presents details in ellipse [C] in Figure 5(b), in which a number of nanograins can be 

observed with its corresponding selected area electron diffraction (SEAD) being concentric circles. Its 

HRTEM is shown in Figure 5(e), in which the sizes of nanograins are about 20 to 30 nm. In addition, 

subgrains and subgrain boundary can be found in Figure 5(f), which are the very first step for the 

formation of refined grains. 

 

 

Figure 5. Typical TEM images after SLSP. (a) dislocation structures; (b) detail of zone [A] illustrating 

stack faults; (c) HRTEM taken from ellipse [B] in Figure 5(b); (d) detail of ellipse [C] in Figure 5(b) 

illustrating namograins; (e) HRTEM of nanograins and (f) surgrains and subgrain boundary. 

3.2. Microhardness 

Figure 6 presents a comparison of in-depth microhardness of samples before and after SLSP. It can be 

clearly found that SLSP can introduce a hardening layer within the top surface. It is also worth noting 

that the microhardness increment in SLSP is lower than that in conventional CLSP. This is due to low 
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magnitude of peak pressure resulted from different laser energy distribution in the spot. The laser 

energy distributes as Gaussian function in a circular spot, while it distributes homogeneously in a 

square spot. The net result is that the peak pressure in the center of a square spot is lower than that in a 

circular spot. As for surface microhardness, increasing laser pulse energy to 15 J and 20 J, surface 

microhardness increased by approximately 10 HV and 20 HV respectively comparing with original 

surface microhardness, while increasing impact time from one to two resulted in slight change of 

surface microhardness both in 15 J and 25 J SLSP. According to Hall-patch theory [13, 14], HV is 

proportional to ρ1/2 (ρ, dislocation density). Therefore, the enhancement in microhardness is due to the 

generation of high-density dislocation.  

As for the depth of hardening affected layer, increasing laser pulse energy to 15 J and 20 J, an 

affected depth of 780 μm and 1100 μm were obtained respectively. This is because SLSP-induced 

shock wave transmitted deeper in 25 J and interacted more intensively with the target material. When 

increasing impact time of peening in both 15 J and 25 J, the affected depths in both condition 

exceeded 1.3 mm. The affected depth generated by a square spot is deeper than that of a circular spot 

because the shock in a square spot expands like a planar front, which attenuates at a rate of 1/r, while 

in a circular spot the shock wave behaves like a sphere, which results in attenuation at a rate of 1/r2 [5, 

10]. 
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Figure 6. In-depth microhardness distribution after 15 J and 25 J SLSP with one and two impacts. 

3.3. Residual Stress 

Figure 7 exhibits the comparison of in-depth residual stresses after 15 J and 25 J SLSP with one and 

two impacts. It is clearly shown that compressive residual stresses with maximum value of several 

hundred MPa and affected depths of several hundred microns to more than 1 mm have been 

introduced in the surface and subsurface. The peak compressive residual stress increased from -120 

MPa to -166 MPa, when increasing laser energy from 15 J to 25 J. Moreover, when increasing impact 

time from one to two in 15 J and 25 J, the compressive residual stress increased by 61.6% and 42.0% 

(from -120 MPa to -194 MPa and from -166 MPa to -234 MPa), respectively. The lower increment in 

25 J can be attributed to the degree of residual stress saturation, which means the residual stress 

generated in 25 J is more saturated than that in 15 J with one impact. The more the generated stress is, 

the lower increment of the residual stress will be. As for the residual stress affected depth, it increased 

from ~700 μm to ~1 mm, when increasing laser pulse energy from 15 J to 25 J. The similar increments 

can also be achieved when increasing impact time from one to two in both 15 J and 25 J SLSP. Noting 

that the peak compressive residual stress in 15 J with two impacts is higher than that in 25 J with one 

impact, which proves that increasing impact time is a more effective method in acquiring high value 

residual stress. It is also worth noting that the peak compressive residual stresses are not located in the 

surface, but a depth between 100 μm to 200 μm. This is due to the release wave generated by 

boundary effect focalized to its center, causing reverse plastic strain and the stress drop [9]. 
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Figure 7. In-depth residual stress distribution after 15 J and 25 J SLSP with one and two impacts 

4. Conclusions 
Square-spot laser shock peening on 7055 aluminum alloy with laser energies of 15 J one and two 

impacts and 25 J one and two impacts has been investigated. The main findings are listed below. 

 Microstructural PLM and SEM observations revealed that microstructures were significantly 

refined due to laser shock induced recrystallization. The longish rolling grains broke into 

intermittent smaller grains and further into randomly oriented fragmentary grains. 

 Microdefects such as dislocation tangles, dislocation wall and stacking fault were generated in the 

surface layer after SLSP. Subgrains and nanograins were also obtained in the surface layer. These 

microdefects played a significant role in surface layer grain refinement. 

 A higher value of surface microhardness can be achieved by increasing laser pulse energy, while 

increasing impact time only cause slight change in surface microhardness. However, thicker 

hardening layers can be obtained by increasing laser pulse energy or impact time. The hardening 

layer exceeded 1.3 mm in 25 J SLSP with two impacts. 

 A higher value of peak residual stresses and thicker compressive residual stress layers can be 

achieved by increasing laser pulse energy and impact time. However, increasing impact time can 

be a more effective method in acquiring high peak residual stress. 
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