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Abstract: This paper reported the β-Ga2O3 nanofibres which fabricated by electrospinning, 

and then calcining in oxygen at 750, 850, 950 and 1050C. The structure and properties of 

β-Ga2O3 nanofibers have been studied though kinds of methods such as XRD, 

Photoluminescence (PL) spectrum, Raman spectrum, Scanning electron microscope (SEM) and 

FT-IR. The diameters of these nanofibres are from 60 to 130nm and the lengths of these 

nanofibres are about couple millimetres. The spectrum of PL which excitation at 365nm gave 

us the information that the emission peak of these β-Ga2O3 nanofibres is about 470nm, it may 

be coursed by the various defects including the vacancies of gallium and oxygen and the 

gallium-oxygen vacancy pairs as well, and observed that with the increasing of the annealing 

temperature, the emission peaks have a small bule swifting, and the crystallinity become better 

at the same time. 

1. Introduction 

β-Ga2O3 is a very important semiconducting material [1], and it has kinds of crystalline structures 

called α, β, γ, δ and ε phases. It has a band gap of 4.9 eV [2]. Nanosize β-Ga2O3 owns special 

properties of conduction and semiconductor which indicate applications in the devices of 

optoelectronic such as flat panel displays, photoelectric converter, and Optical limiter for UV oxide 

because of its surface area/volume ratio [3]. It also can be used to fabricate solar-blind devices due to 

its solar-blind properties under deep ultraviolet environment [4-8]. And the bigger surface area/volume 

ratio is the better for the application of gas sensors. Such as S.H.Park, et al. [9] observed CO gas 

sensing properties through synthesis surface nitriding Ga2O3 nanowires. And Shinji Nakagomi, et 

al.[10] found that the sensors fabricated by a β-Ga2O3 thin film could detect 100ppm H2 in 20% 

O2/N2 at 400C. Therefore, it is necessary to get nanostructure β-Ga2O3. Now days, β-Ga2O3 of 

nanostructure could be synthesized by several kinds of methods like simple precipitation technique 

[11], electrochemical reaction [12], atmospheric-pressure CVD [13], metal organic chemical vapor 

deposition (MOCVD) [1], and thermal evaporation method[14]. But, these methods need complicate 

equipments, catalysis, or introduce impurity atom, and the prepared β-Ga2O3 including the vestigital 

of the catalysis [15]. Therefore, it is necessary to fabricate β-Ga2O3 nanofibres which have a high 

purity. However, there are no reports on the effect of annealing temperature on the structure, 

photoluminescence properties and purity of β-Ga2O3 nanofibres by electrospinning. In this paper, a 

kind of simple and reliable method of fabricating β-Ga2O3 nanofibres is 

recommended—electrospinning. Electrospinning is a simple and less costly method to synthesis 

nanofibers with high draw ratio. Kinds of nanofibres of materials could be generated with it including 
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polymer, polymer or inorganic composites, and inorganic nanofibres. Through sintering of the 

as-prepared compound fibers carefully, β-Ga2O3 nanofibres have been fabricated successfully. 

2. Experiment 

Ga2O3 nanowires were electrospun from precursor which was prepared by the solution of 

Ga(NO3)3·6H2O, and polyvinylpyrrolidone(PVP, Sigma Aldrich, Mw≈1300000), PVP is an 

aggregation of composite materials because it has good ethanol and water solubility and the 

compatibility with nitrate. The precursor solution containing 1.0g Ga(NO3)3, 6.5 ml C2H5OH, 5.5 ml 

H2O, and 4.0 g PVP respectively. And then the solution was stirred for 12h directly. After that, the 

viscous solutions was obtained. Then the viscous solution was put into a injector with a hollow needle, 

The process of electrospinning was shown in Figure. 1. Positive pole of a high-voltage power supply 

and the point of the syringe needle were concatenated while the negative pole was connected to the 

plate of the collector. Voltages connected to the tip and the collector plate was 15 kV and -15KV 

respectively, and the distance between the needle tip and the collector was 25 cm. After all these 

parameters were set up, the solution would be electrospun next. The deposition continued for 1h so 

that the dense mats would be well obtained. After spinning, the fibers which prepared would be dried 

at 80C for 3h. And then the fibres would be calcined at different temperatures to get different 

samples.  

 

  

Figure1. Process of electrospinning 

 

The crystalline structure of the fibres were examined by X-ray diffraction (XRD) using General 

motors XD-3 with Cu target. Raman spectrum were detected on a Horiba jobin yvon T64000 Confocal 

Raman spectrometer using 532nm excitation laser. The FT-IR spectrum has been detected during the 

range of 4000-400 cm-1 with a Bruker Vertex 80V FTIR spectrometer instrument. The morphology of 

the nanofibers were characterized by the SEM(JSM-6510). The photoluminescence (PL) spectra were 

measured at room temperature with a Edinburgh FLSP920 spectrophotometer. The excitation light 

was the monochromatic light from a Xenon short Arc lamp with a wavelength of =365nm. 
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3. Result and Discussion 

 

 

Figure. 2. SEM images of the β-Ga2O3 calcined nanofibres at : (a)750C, (b) 850C, (c) 950C, (d) 

1050C 

 

Figure.2 shows the typical SEM images of the β-Ga2O3 nanofibers which calcined at different 

temperatures and the annealed fibres are distribution randomly. And the surface of the fibres is very 

slick. There are several factures in the 850C and 950C samples maight be caused by the evaporation 

of the solvent, There are no great particles attached on the surface of the nanofibres. And, the width of 

the fibres is in the range of 60nm-200nm, and the average diameter of the β-Ga2O3 nanofibres is 

about 120nm. And the length are several micrometers. It is observed that the calcined temperature do 

not have an obvious effect on both the surface topography and the crystalline phase of the fibres. 

Figure. 3 shows the XRD pattern of β-Ga2O3 nanofibres which annealed at 750, 850, 950, 1050 C. 

The lattice constants of the crystalline phase are a0 = 1.2227 nm, b0 = 0.3039 nm, c0 = 0.5808nm. All 

the peaks are matched well to β-Ga2O3 and the peaks are (201), (-202), (020) respectively [16]. The 

XRD pattern signs that the annealed nanofibres was β-Ga2O3 surely. And with the increasing of the 

annealing temperature, all the peaks become higher and sharper indicate a higher degree of 

crystallization. No other impurity phases are detected, so the samples we obtained were pure without 

other dephasigns. 
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Figure 3. XRD pattern of β-Ga2O3 nanofibres annealed at 750, 850, 950, 1050 C 

 

Figure.4 shows the PL spectrum of the β-Ga2O3 nanofibres annealed at 750, 850, 950, 1050 C 

respectively under excitation of 365nm. The dominant emission located at approximately 470 nm in 

the blue region. And the emission (470 nm) of blue band may be produced by the recombination of an 

electron of a donor originate from oxygen vacancies (VO) and a hole from an acceptor originate from 

gallium vacancies (VGa) or the gallium-oxygen electron hole pair (VO, VGa) [17][18]. It is reported 

that the peaks of the blue emission will enhance with the increase of the gallium-oxygen vacancy pairs 

[16][19]. Figure.4 shows that the blue emission peaks decrease with the increase of the annealing 

temperature. It may result from the reduce of the gallium-oxygen vacancy pairs caused of the reacting 

between O2 and as-prepared samples more fully. As for the blue shift of the emission spectrum, it 

probablely results of the quantum size effect [20] caused by the small tapering off of the nanowires 

which cannot be observed easily. 
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Figure 4. PL spectrum of the β-Ga2O3 nanofibres annealed at 750, 850, 950, 1050 C 
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Figure 5. FT-IR spectrum of the β-Ga2O3 nanofibres calcined at 750, 850, 950, 1050 C 

 

The peaks located at 613 and 459 cm−1 in Figure.5 assigned to Ga–O–Ga and Ga–O vibration of 

β-Ga2O3 respectively, instead of 650 and 480 cm−1 of the peaks in the α-Ga2O3 [21]. and the peak at 

1089 cm −1 belongs to asymmetric stretching vibration absorption of Si-O-Si [22]. it’s obviously 

observed that with the increase of the annealing temperature, the infrared absorption is becoming 

stronger which indicated that the content of Ga–O–Ga and Ga–O increased. It signify that with the 

increase of the annealing temperature, oxygen vacancies were filled with oxygen elements to form 

Ga–O–Ga and Ga–O bonds. 
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Figure 6. Raman spectrum of β-Ga2O3 nanofibres 
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Figure. 6 shows typical micro-Raman spectra of β-Ga2O3 nanofibres. The Raman spectra show 11 

clear Raman peaks. And the positions of the peaks locate at 140.3, 168.5, 198.8, 348.1, 418.0, 471.3, 

485.6, 628.3, 651.4, 765.9, 791.5 (cm-1). These peaks are very peaked and narrow which sign that the 

crystallinity is very well and these peaks belong to the C2h group symmetry, implying a unit cell with 

two formula units, Ga2O6 octahedra and GaO4 tetrahedra [16]. The peaks of the Raman spectrum can 

be divided into three kinds such as low (below 200 cm-1), mid (between 300 cm-1and 500 cm-1), and 

high (between 500 cm-1and 800 cm-1) frequency modes. The low modes are related to the 

low-frequency libration and translation of tetrahedron–octahedron chains [23]. The mid modes are 

relate to the mid-frequency deformation of Ga2O6 octahedra. The last high modes attributed to the 

high frequency and result of stretching and bending of GaO4 tetrahedra [24]. 

4. Conclusion 

In summary, we have studied the structure and photoluminescence properties of β-Ga2O3 which 

synthesized via electrospinning. SEM show the Morphology of the fibres, XRD and Raman confirmed 

the monoclinic phase of β-Ga2O3 nanowires, indicate that the samples we fabricated are pure. The PL 

spectrum of the β-Ga2O3 nanofibres exhibits the blue emission peaks about 470nm under excitation of 

365nm at room temperature and the mechanisms of the blue shift and photoluminescence of the 

β-Ga2O3 nanofibres were discussed. FT-IR spectrum indicated that oxygen vacancies decreased with 

the annealing temperature increasing. 
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