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Abstract. To investigate the effect of pre-strain on behaviors in a specially developed 
Al-4.5Zn-1.2Mg alloy, transmission electron microscopy (TEM) bright field (BF) 

imaging combined with select area electron diffraction (SAED), Vickers-hardness 

tests and electrical conductivity tests was conducted for insight into precipitation in 
aluminum (Al) matrix during two step ageing, and standard exfoliation corrosion 

(EXCO) test combined with high-angle angular dark field scanning transmission 
electron microscopy (HAADF-STEM) and scanning electron microscopy (SEM) was 

carried out for corrosion behavior. Results showed that pre-strain accelerated 

precipitation during two step ageing as the sequence of: (i) supersaturated solid 
solution (SSS), GPI zones precipitations, GPI dissolution; (ii) SSS, fcc precipitates, 

η’ phases or η phases. And the precipitation hardening of the fcc precipitates was 

not effective as GPI zones. Pre-strain also accelerated EXCO developing, which was 

mainly attributed to the coverage ratio of η phases on high-angle grain boundaries 

(HAGBs) increasing as pre-strain increase. 

1.  Introduction 
Precipitation hardened Al-Zn-Mg alloys, known as 7xxx series aluminum alloys, are widely used as 

structural materials in constructions, vehicles and aircrafts due to high specific strength, toughness as 
well as good formability[1,2,3]. Compared with other 7xxx series aluminum alloys, the specially 

developed Al-Zn-Mg alloy used in this study contains lower Zn, Mg, and Cu to obtain higher ductility, 
better weld ability, and corrosion resistance as a sacrifice of some strength [4, 5, and 6]. Precipitation 

and corrosion resistance are therefore deemed critical behaviors in this Al-Zn-Mg alloy, reflecting 

performance and durability in applications. 
In precipitation hardened Al-Zn-Mg alloys, quenching from the solution heat treatment temperature 

is an inevitable step to acquire high strength and uniform properties [7, 8]. However, this step is bound 
to high thermal gradients in materials, which is the cause of high magnitude residual stresses, even 

inhomogeneous plastic deformation[7] and distortions during machining of large and complex 

parts[9,10]. Considering degrading original behaviors at minimum, applying pre-strain after quenching 
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is better to avoid the harm of residual stresses in semi-finished aluminum alloy products, compared to 

reducing quench rate [7].  

So far, according to the paper published[11,12], productions and computer simulations were 
conducted to investigate quench-induced residual stresses relieving by applying pre-strain, showing 1-

3% uniform pre-strain in the rolling direction eliminated most stresses without much strain-hardening. 

With the in-depth research, it was found that the behaviors of Al alloys varied  with pre-strain applied, 
see for example D. Wang(2009)[13], N. M. Han(2011)[14]. As shown in former works that effects of 

pre-strain on behaviors were composition-varying [14, 15, 16, 17] or heat treatment-varying [13, 14], 
critical behaviors (like precipitation and corrosion resistance [18]) shall be therefore tested if the alloys 

are aimed at application. 

This work aimed to investigate precipitation and EXCO resistance that were presented in 12mm 
thick Al-Zn-Mg plates, where the main experimental variable was the pre-strain after quenching. The 

two step ageing were conducted on these plates, since several former works had reported excellent 

improvement on corrosion resistance by this ageing treatment [19, 20, 21, and 22]. Precipitation was 
investigated mainly by TEM combined with Vickers-hardness and electrical conductivity tests. The 

EXCO resistance results were collected under the standard of ASTM G34 [23], which is commonly 
used on 7xxx series Al alloys. And SEM, electron back-scattered diffraction (EBSD) and HAADF-

STEM, which were verified as effective method to investigate EXCO resistance in our former work, 

were used for further investigation.  

2.  Experimental 

2.1.  Material and heat treatment 

In this work, the specially developed 12mm-thick Al-4.5Zn-1.2Mg alloy plate containing small 
amounts of Mn, Cr, Cu and Zr was supplied in hot-rolled condition. Five plates numbered as A, B, C, 

D and E were stretched after solution treatment at 470°C for 1h and followed room temperature water 
quench at the rate of 2mm/min till about 0%, 0.65%, 1.97%, 3.41% and 7.50% strain, respectively. 

Then the several samples with different size were cut from the five plates for further investigations. 

These samples were aged at 95°C for 24h firstly and at 160°C for periods of 0h-4h afterward. 

2.2.  Vicker-hardness and electrical conductivity test 

The Vickers-hardness (5kg load) and the electrical conductivity of the samples with different pre-

strain and ageing treatment at 160°C for periods of 0h, 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h and 4h were 
measured at room temperature.  

2.3.  EXCO test 
The EXCO tests were performed on the five samples undergone complete two step ageing according 

to the standard EXCO test as described in ASTM G34-2001(2013)[23]. The EXCO test solution 

whose chemical composition of 4 mol/L sodium chloride, 0.5 mol/L potassium nitrate and 0.1 mol/L 
nitric acid was maintained 25°C±3°C during whole test. After 48h of continuous immersion in the 

EXCO test solution, corrosion morphology was recorded by camera, and the susceptibility to EXCO 

was determined by visual examination with performance ratings established by reference to standard 
photographs N (No obvious attack), P (pits, sometimes with a tendency for undercutting and slight 

lifting of metal around the pits), EA (tiny blisters, thin chips, flakes or powder, companied with only 
slight separation of metal) and EB to ED (range from moderate penetration into the metal to much 

more considerable penetration and loss of metal).  

2.4.  Microstructural examination 
Samples were cut from the samples after the Vickers-hardness and electrical conductivity tests or 

EXCO test for further study on microstructure. SEM observations were performed on longitudinal 

sections using JSM-6510 scanning electron microscope after mirror polishing. JSM-7001F scanning 
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electron microscope and Edax Pegasus XM2 EBSD accessories were used for EBSD observations on 

longitudinal sections of different samples to analyze and calculate fraction of recrystallization and 

HAGBs. The samples for these observations and calculations were prepared by electrolytic polishing. 
SAED patterns, matrix precipitates and precipitates on HAGB were studied by TEM, HAADF-STEM 

on Tecnai G2 F20 transmission electron microscope and high-resolution (HR-) TEM on JEOL-2010 

transmission electron microscope. The thin foils for TEM and HAADF-STEM were prepared by 
mechanical grinding and final twin-jet electro polishing in the solution of 25% nitric acid and 75% 

methanol at about -35℃.  

3.  Results 
The electrical conductivity test is an effective method to analyze precipitation in Al matrix [24]. As 

shown in Fig.1, the electrical conductivity in all samples increases during 0h to 0.5h of the second 
stage ageing, sustaining at above 20.0MS/m until 1h, while the peak of this stage cannot be measured 

precisely. Then, the electrical conductivity in pre-strained samples decreases rapidly and soon rises up 

from 1h to 2.5h, compared to durative decrease in the sample A without pre-strain. After 2.5h, the 
conductivity of all the samples increases until the second stage ageing finished. Compared to the 

higher pre-strained sample D and E, the electrical conductivities in the sample A, B and C are lower 
during the second step ageing. 

 

 

Figure 1. Influence of the second step ageing treatment on the evolution of electrical conductivity in 
the samples. 

 

As shown in Fig.2a, in the sample A and B, three wave valleys are seen at 0.5h, 1.5h and 2.5h, 
respectively, accompanied by two wave crests at 1h and 2h, respectively. Compared to the sample A 

and B, less wave valleys are seen in the sample C, D and E in Fig.2b, and the locations of the wave 
valleys change. Before the second step ageing, the higher pre-strain led to higher Vickers-hardness, 

which might result from strain hardening. The Vickers-hardness of all the samples reached lowest at 

around 1.5h to 2h. Compared to the sample A, the Vickers-hardness of the sample B, C, D and E 
decrease after 3.5h.  
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Figure 2. Influence of the second step ageing treatment on the evolution of Vickers-harness in the 

samples: (a) A and B; (b) C, D and E. 
 

Fig.3a-b show two SAED patterns in <001>Al from the sample A at 0h, 0.5h second step ageing, 

respectively. And Fig.3c-e show three SAED patterns in <111>Al from the sample A at 1.5h, 2.5h and 
4h of the second step ageing, respectively. The main strong diffraction spots are attributed to Al matrix.    

The weak sharp spots at {100} and {110} in Fig.3a-b and the weak sharp spots at {110} and {211} in 

Fig.3c-e results from Al3Zr dispersions [24, 25]. The weak spots at {1, (2n+1)/4, 0} positions in 
Fig.3a reflects spherical GPI zones form after the first step ageing [24, 26, 27], compared to none such 

weak spots in Fig.3b, indicating that GPI zones dissolve after 0.5h ageing. The sharp spots marked as 
the point A and B in Fig.3c locate at the positions neighboring 2/3{211} which are also seen in Fig.3d 

and e, and the same spots were also observed in Y. Duan’s work [28] on A7N01-T4 Al alloy and in Y. 

C. Lin’s work [29] on an Al-5.8Zn-2.3Mg-1.5Cu-0.21Cr, in which those spots were ascribed to GPII 
zones in their opinions. The weak spots marked as the point Cat neighboring {211} in Fig.3c are hard 

to distinguish at the similar positions in Fig.3d, indicating these weak spots are not formed by Al3Zr. 

The angle AOB measured three times for average is 69.735 degree, and the length ratio of OC to OA 
is about 1.129. Based on information above, a hypothesis was proposed that the spots at A, B and C 

were the consequence of a kind of face-centered cubic (fcc) precipitates, whose <011> zone axis was 
parallel to <111>Al. The SAED patterns in Fig.3c and d confirm the fcc unit cell of the precipitates 

a=0.347nm, and the fcc unit cell of Al matrix a=0.391nm. The weak spots at 2/3{220} and 2/3{211} 

shown in Fig.3e result from η’ phases, and those weak spots around 2/3{220} and 2/3{211} result 

from η1 phases[25,30,31]. 
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Figure 3. SAED patterns of the sample A at: (a) 0h; (b) 0.5h; (c) 1.5h; (d) 2.5h; (e) 4h of the second 

step ageing. 

 
Fig.4a-f show TEM BF images in <011>Al zone axis from the sample A at 0h, 0.5h, 1.5h, 2.5h, 3h 

and 4h, respectively. As shown in Fig.4a, most nano scale precipitates are spherical, but some rod-

shape precipitates can also be distinguished. And there are two kinds of precipitates seen in Fig.4a, 
one is clear coarser spherical or rod-shape precipitate, another one is blurred finer spherical precipitate. 

Compared to Fig.4a, the size of clear precipitates is larger and the blurred finer precipitates are 
disappear in Fig.4b, which may correspond to the weak spots at {1,(2n+1)/4,0} positions fading in 

Fig.3b. Most precipitates in Fig.4b-e are clear coarser spherical or rod-shape precipitates, and the long 

sides of the most rod-shape precipitates are vertical to g=[111]. It is telling that the precipitates in 
Fig.4d are denser than those in Fig.4c and e, possibly corresponding to the sharpest spots near 2/3{211} 

in Fig.3d. As shown in Fig.4f, those plate-shape or rod-shape precipitates at the size of about 10nm are 

distinguished as η’ phases or η phases, corresponding to the spots seen at or near the position of 

1/3{220}, 2/3{220} and 1/3{420} in Fig.3e. 
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Figure 4. Typical BF images of the sample A at: (a) 0h; (b) 0.5h; (c) 1.5h; (d) 2.5h; (e) 3h; (f) 4h of 
the second step ageing. 

 
Fig.5a-d show four SAED patterns in <111>Al from the sample D at 1h, 2h, 3.5h and 4h of the 

second step ageing, respectively. The spots near 2/3{211} can be seen in all the four SAED patterns in 

Fig.5, while the intensity changes during the second step ageing. The weak spots at and around 

n/3{220} and n/3{211} in Fig.5c and d result from η’ phases and η1 phases, respectively[25,30,31]. 

More obvious spots resulted by η’ phases and η phases (in the orientations η1, η2 and η4)[31] 

are seen in Fig.5d, compared to Fig.5c and Fig.3e. 
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Figure 5. SAED patterns of the sample D at: (a) 1h; (b) 2h; (c) 3.5h; (d) 4h of the second step ageing. 

 

Fig.6a-d show BF images in <011>Al zone axis from the sample D at 1h, 2h, 3.5h, 4h, respectively. 
From Fig.6a to b, the size of the clear coarser spherical or rod-shape precipitates decreases. In Fig.6b, 

the shaded above 10nm zones accompanied by the size of surrounding precipitates decreasing may be 

related to the transformation from the fcc precipitates to η’ phases, which can also be seen at lower 

right corner in Fig.4e. 

 

 

Figure 6. Typical BF images of the sample D at: (a) 1h; (b) 2h; (c) 3.5h; (d) 4h of the second step 

ageing. 
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Fig.7a-b show dislocations under the condition of g=[111
一

] and similar thickness in the sample A 

and D before the second step ageing, respectively, since the sample A and D were mainly focused on 

for studying matrix precipitates during the second step ageing. The densities of the dislocations 
increase as the pre-strain increasing. In former works on dislocations in pre-strained 7xxx series alloys, 

the pre-strain was recognized as what led to the generation of the dislocation in general[14]. 
 

 

Figure 7. BF images of the sample: (a) A; (b) D. 
 

The EXCO ratings of the five samples listed in Table.1 were rated based on the surface 

morphology after 48h immersion in EXCO solution of the five samples (as shown in Fig.8), 
respectively. The ratings were all ED, though the sample A is less corroded as shown in Fig.8a, 

compared to other samples. To distinguish the different EXCO resistance of the same EXCO rating of 

the five samples, a method by measuring the average thickness of EXCO products on longitudinal 
section were used in this work, and the results from at least three images for each example were listed 

in Table.1. The typical EXCO products in the sample A, C and D, which are brighter in contrast (due 
to their poor performance in electrical conductivity) and fusiform in shape, were shown in Fig.9 for 

examples. The average thickness of EXCO products in each sample was calculated in at least three 

SEM images and then was listed in Table.1.  
Fig.10 shows grain boundaries precipitates of the five samples after the second step ageing. In this 

rolled Al-Zn-Mg alloy, due to the higher grain boundaries energy, the precipitates on HAGBs 

distributing discontinuously are coarser and prior corroded in EXCO tests, compared to those on low-
angle grain boundaries or sub-grain boundaries. Therefore, the precipitates on HAGBs were focused 

on in this work. Based on the HAADF-STEM images of the five samples shown in Fig.10, the average 

coverage ratio and size of the η phases on HAGBs were calculated and listed in Table.1. The 

coverage ratio, which is defined as line fraction of total length of η phases in the direction of HAGB 

to total length of HAGB, increase as the pre-strain increase in general, and it seems the coverage ratio 
rapidly reaches about 50% since the pre-strain reaches 0.65% and remains around this value until the 

pre-strain reaches 7.50%. As for the size, it seems the sizes decrease as pre-strain increase generally. 

Besides, the recrystallization fractions calculated from EBSD results in the five samples were also 
listed in Table.1, and the typical EBSD images were shown in Fig.11. But it seems the fractions of the 

five samples have little connection with pre-strain. 
 



9

1234567890

FMSP 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 274 (2017) 012007 doi:10.1088/1757-899X/274/1/012007

 

 
 

 
 

 

 

Figure 8. Surface morphology of the sample: (a) A; (b) B; (c) C; (d) D; (e) E. 

 

 

Figure 9. Typical SEM images of EXCO products on longitudinal section in the sample: (a) A; (b) C; 

(c) D. 
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Figure 10. Coverage of η phases on HAGBs in HAADF-STEM images of the sample: (a) A; (b) B; 

(c) C; (d) D (e) E. 
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Figure 11. Typical calculated grain average disorientation images on longitudinal section by EBSD: (a) 
sample A; (b) sample B; (c) sample C; (d) sample D; (e) sample E. 

 

Table 1. Results from images of SEM, HAADF-STEM and EBSD 

Number A B C D E 

Exfoliation corrosion rating ED ED ED ED ED 

EXCO products thickness(μm) 25.2 36.6 54.8 63.5 48.8 

Coverage ratio of η phases on HAGBs (%) 31.3 50.1 47 57 57.2 
Average size of η phases on HAGBs(nm) 91.8 84.8 64.3 68.7 58.9 

Recrystallization fraction (%) 8.7 7.5 5 6.9 4.3 

4.  Discussion 

4.1.  Precipitation 

The similar fluctuations of electrical conductivity in the five samples during the second step ageing are 

seen in Fig.1, indicating the similar phases transformations were happened. Although in Al-Zn-Mg 
alloy the predominant factor influencing electrical conductivity is lattice distortion, the electrical 

conductivity decreases as GP zones precipitating in general. From 0h to 0.5h, it seems that some nano 
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scale blurred finer precipitates formed in first stage ageing dissolve, since electrical conductivity 

increases attributed to the size of those nano scale precipitates approximate to the wavelength of the 

free electrons in matrix during the electrical conductivity tests. These blurred precipitates are round in 
HR-TEM images shown in Fig.12a, which is consistent with the results of HR-TEM images of an Al-

Zn-Mg-Cu alloy aged for 7h at 115°C from the work of Z. H. Li [30]. The first transformation from 0h 

to 0.5h may be the dissolution of GPI zones corresponding to the transformation shown in BF images 
from Fig.4a to Fig.4b, which is proved by disappearing of weak patterns at the positions of 

{1,(2n+1)/4,0}. J. C. Werenskiold [31] summarized former works as that GPI zones either dissolved or 

transformed into η’ phases at above the GP zones solvus in Al-Zn-Mg alloys, which accorded with 

the transformation happened from 0h to 0.5h in this work.  

Hardening obtained in Al alloys mainly depends on metallic system involved and the volume 
fraction and size of main hardening particles [24]. In precipitation hardening Al-Zn-Mg alloys, 

solution hardening also have effect on hardness of Al matrix. During this stage, the Vickers-hardness 

of all the samples decrease in the first 0.5h, which may be dominantly attributed to that the 
precipitation hardening of GPI zones is more effective than the solution hardening resulted by GPI 

zones fading.  
The second transformation may start from 0.5h or 1h until different time in different samples, such 

as, 2.5h in the sample A and 2h in the sample D. It seems some small precipitates at the size of about 

5nm are precipitated from matrix during this stage as shown in Fig.4d. Actually, the precipitates in BF 
images including spherical ones and rod-shaped ones (whose longer sides are parallel to {111} Al) 

indicate there are some precipitates formed on the {111} plane of Al matrix. Moreover, compared to 

Fig.3c, the sharper patterns at the positions neighboring 2/3{211} and {211} shown in Fig.3d indicate 
a kind of precipitates whose <011> orientation is parallel to the <111> orientation of Al matrix 

increase from 1.5h to 2.5h. Consequently, it seems the rod-shaped precipitates in the bright field 
images are formed on the {111} planes of Al matrix which are parallel to the specific <011> zone axis 

of the images, while some of the spherical ones are projections of themselves formed on the {111} 

planes of Al matrix which are not parallel to the specific <011> zone axis. Therefore, it is reasonable 
to ascribe the spots near 2/3{211} to those rod-shaped precipitates and part of spherical precipitates. 

Moreover, these precipitates were not only found after the first transformation finished but were also 

distinguished in the sample A before the second step ageing (shown in Fig.12a and b), indicating these 
precipitates were more stable than GPI at the temperature of the second step ageing. 

In J. Z. Liu’s work[33], HAADF-STEM was used to observe the atoms arrangement of the similar 

precipitates named GP-η’ and GP-ηp in the peak-aged 7N01 alloy and 7055 alloy, respectively, and 

their results showed these precipitates were both Zn-rich clusters on {111}Al. And the Marinara 

model of GP-ηp precipitate [34] showed a similar microstructure of Zn-rich clusters on {111} Al. In 

their investigations on GP-η’ or GP-ηp, these phases were made up mainly of a framework of Zn 

atoms. According to the results (the fcc unit cell, a=0.347nm) in this work, only Zn atoms planes can 

fit in the unit cell parameter on the condition that Mg atoms are larger than Al atoms. It seems the fcc 
precipitates in this work are also Zn-rich clusters on {111} Al and were made up of a similar 

framework. In K. Stiller’s work, the GPII zones in an Al-2.30Zn-1.38Mg alloy were described as a 

few atoms layers thick on {111}-planes, leading to six weak spots at the positions near 2/3{220} in 
SAED patterns of [111] projection. As mentioned above, the spots from the fcc precipitates in this 

work, Y. C. Lin’s work or Yi Duan’s works locate at the different positions, compared to the spots 
from GPII zones in K. Stiller’s alloy containing less Zn. Besides, the HR-TEM images as shown in 

Fig.12 and Z. H. Li’s work[30] pointed out the thickness of this kind of Zn-rich clusters along [111]Al 

were approximate 1nm, showing big difference with HR-TEM images of GPII in L. K. Berg’s 

work[26]. So it is more reliable to classify the fcc precipitates and GP-η’ or GP-ηp together, rather 

than GPII zones.  

 



13

1234567890

FMSP 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 274 (2017) 012007 doi:10.1088/1757-899X/274/1/012007

 

 
 

 
 

 

 

Figure 12. HR-TEM images in [011]Al zone axis of (a)the first selected area and (b)the second 
selected area in the sample A before the second step ageing. 

 
The software was used for simulating the different intensities between {200} and {111} of fcc 

precipitates themselves when incident electron beam was vertical to (111) Al and the thickness of 

precipitates were 1nm (measured in Fig.4d). Results were shown in Fig.13, indicating rotating 9.81° 
on [01-1] zone axis of fcc precipitates could lead to weak {200} patterns. As shown in Fig.13b, the 

angle between {111} is 68.74°, which accords the results measured in Fig.3c to e. So the [011] zone 

axis of the fcc precipitates may not be perfectly parallel to [111]Al but have a 9.81° deviation in 
particular direction. 

 

 

Figure 13. Unit cell of fcc precipitates after 9.81° rotation in (a) and its corresponding SAED patterns 

simulation in (b). 
 

During this stage, the Vickers-hardness of all the samples decrease in general but some fluctuations 
still exist. Those fluctuations may be related to experimental errors caused by measuring or natural 

ageing hardening happened after unfinished artificial ageing. Compared to decrease of the hardness 

ascribed to the dissolution of GPI zones, the decrease in this stage, which is resulted from this kind of 
precipitates forming, indicate this kind of precipitates have little effect on hardening the Al-Zn-Mg 

alloy used in this work, even cannot make up the lost hardness caused by the decrease of solution 

concentration.   

The third transformation attributed to the formation of η’ phases and η phases may follow the 

end of the second transformation, indicating the evolution from the fcc precipitates to η’ phases may 

exist. At the beginning of this stage, as shown in Fig.4e and Fig.6b, some shaded zones are seen, 
which may lead to the weak shaded patterns neighboring 2/3{211} in Fig.5b. In others former work, 
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these weak patterns were attributed to a kind of precipitates named GPII zones, which is also rod-

shaped in bright field images. Then, the η’ phases or η phases seen in Fig.3e and Fig.5c form, and 

their patterns are seen in Fig.4f and Fig.6c, respectively. The electrical conductivity of all the samples 

increase rapidly as η’ phases and η phases forming because of the main solute atoms in Al matrix 

decreasing as the semi-coherent η’ phases and the incoherent η phases forming. Compared to the 

rapid increase of Vickers-hardness in the un-strained sample A, the hardness in pre-strained samples 

firstly increase rapidly and decrease after 3.5h which is the consequence of the average size of the η’ 

phases or the η phases increasing from 7.3nm to 11.5nm as shown in Fig.5c and Fig.5d. The 

transformation from η’ phases to η phases is inevitable because the second step ageing temperature 

is high. 

Above all, the pre-strain before ageing accelerated the precipitation in this alloy. Furthermore, 4h 

of the second step ageing may be not enough for un-strained sample to acquire max hardness, but 
excessive for pre-strained sample. This acceleration led by pre-strain may be ascribed to the 

dislocations produced by pre-strain as shown in Fig.7. Moreover, the precipitation hardening from GPI 
zones is more effective than that from the fcc precipitates whose increase in density leads to decrease 

of Vickers-hardness. 

4.2.  EXCO resistance 

In previous work, the coverage ratio of η phases on HAGBs and the fraction of recrystallization and 

HAGBs were focused on to investigate the effect of microstructure on EXCO resistance in the same 

composition Al-Zn-Mg alloy used in this work. Besides, in former works of other scholars, the size 

and distribution of η phases on HAGBs were also focused on. Therefore, in this work, these factors 

were measured, calculated and discussed to illustrate the effect of pre-strain on EXCO resistance. 

To elucidate the relationship between these series of results (as shown in Table.1) with the EXCO 
behaviors of the five samples, the scaling factors obtained by dividing the results by the maximum 

values among the series of results were made into line chart as shown in Fig.14. Obviously, no line of 
the scaling factors of any series of results perfectly accords with the line of the scaling factors of the 

EXCO products thickness. 

However, compared to other lines, the line of the scaling factors of the coverage ratio accords with 
the line of the EXCO products thickness better, indicating the coverage ratio may be the predominant 

factor effecting EXCO resistance. There are two investigations mentioning coverage ratio before, and 

coverage ratio was firstly proposed [35] for explaining results which cannot be explained by size or 

distribution of η phases on HAGBs. In Marlaud’s work investigating EXCO mechanism on 7449 Al 

alloy [35], conclusion was drawn as the EXCO sensitivities increase as the coverage ratio increase. 

And they also found η phases on HAGBs were prior corroded during 30s immersion in corrosion 

solution, compared to matrix and precipitates free zones. Moreover, in S. D. Liu’s work [36] on 

EXCO mechanism in 7055 Al alloy, the coverage ratio was also found as the main factor influence 
EXCO resistance, which was explained as high coverage ratio increased the area of attacked regions 

during immersion. Combining above results with the results from this work, it can be therefore 

summarized that the high coverage ratio leads to large prior corroded area on HAGBs, which 
deteriorate the resistance against EXCO. 

As for the size, in our previous work and works of Maraud [35] and S. D. Liu[36], it seemed that 
the size had little effect on EXCO resistance, which is contradictory with the results in G. S. 

Peng’s[37], S. Y. Chen’s[38] and J. R. Zuo’s [39] investigations on the influence of GBPs on EXCO 

behavior. Their works were carried out in a specially developed Al-Zn-Mg-Cu alloy, 7085 Al alloy 

and 7055 Al alloy, respectively, revealing coarser and discontinuous η  phases resist EXCO 

effectively. In this work, the scaling factors line of the size accords with the line of EXCO products 

thickness before 1.97% pre-strain but not after that. Based on the results above, it is unconvincing to 

conclude coarser η phases resist EXCO better. 
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Considering the fraction of recrystallization, it was reported in our former works that recrystallized 

grains were susceptible to EXCO when the EXCO ratings of the samples ranged from P to EB. While 

in this work, it is evident the scaling factors line of the recrystallization fraction does not accord with 
the line of EXCO product thickness, indicating the recrystallization fraction has little impact on the 

EXCO resistance of the five samples with the EXCO ratings of ED. Which is to say, the 

recrystallization fraction is not the predominant factor effecting EXCO resistance when the EXCO 
resistance is low. 

 

 

Figure 14. Trend of the concerned factors and the EXCO susceptibilities during pre-strain increasing. 

 

5.  Conclusion 
The combination of behavior tests and microstructure examination was conducted in this investigation 

to elucidate the precipitation during the second step ageing and the predominant factor influencing 
EXCO resistance in this Al-4.5Zn-1.2Mg alloy, and so provided insight into the effect of pre-strain on 

precipitation and EXCO resistance, which was concluded as follows: 

(1) The increased dislocation density ascribed to pre-strain leads to acceleration of matrix 
precipitation. 

(2) The most possible precipitation sequence during the two step ageing applied on this alloy is: 

SSS-GPI zones precipitation-GPI dissolution; SSS-fcc precipitation-η’ phases or η phases forming. 

And the nano fcc precipitates whose <011> zone axis is nearly parallel to the <111>Al deteriorate the 

hardness of Al matrix. 

(3) The increased pre-strain from 0% to 3.41% leads to the increased susceptibility to EXCO, but 

slightly decrease were seen at 7.50% pre-strain. The coverage ratio of η phases on HAGBs increasing 

as pre-strain increase generally may play the dominant role in effecting EXCO resistance, rather than 
the average size or the recrystallization fraction. 
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