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Abstract. A series of thermally conductive and electric-insulating epoxy composites 
filled with boron nitride (BN) modified by octadecyl trimethyl ammonium bromide 
and graphene nanosheets (GNP) were prepared. The effects of modified-BN 
(BNOTAB) and GNP content on thermal conductivity, electric-insulating and thermal 
stability properties of epoxy composite were investigated. The results indicate that the 
BNOTAB can homogeneously disperse into epoxy system. When the mass ratio of 
BNOTAB/GNP is 6:4 (total filler content is 10%), the thermal conductivity of the 
composites reached 0.48 W/(m·K), which is 108.7% higher than that of the neat epoxy. 
Meanwhile, the composite retains excellent electric-insulating property. TGA and 
DSC results showed that the addition of BNOTAB/GNP filler particles can improve 
the thermal stability of epoxy resin composites.  

1.  Introduction 
Epoxy resin is a typical thermosetting resin that has been widely used in the electronics industry [1], 
due to its low cost, excellent electrical insulation properties, resistance to corrosion and good adhesion 
properties. Developments in the microelectronics involving integration and assembly technologies, 
have led to an increased demand for new materials that enable better miniaturization and higher 
frequency components to be incorporated into electronic devices. These demands require that 
materials used for the preparation of electronic devices and logic circuits exhibit good heat resistance 
and low coefficients of expansion. This ensures that any heat generated by electronic components can 
be effectively dissipated, thus enabling electronic devices to operate at higher temperatures without 
failure [2].  

Hexagonal boron nitride, also known as “white graphene”, has a number of advantages as a 
material for electronic applications, including a low dielectric constant, high thermal conductivity and 
good electrical insulation properties. It is considered to be the optimal filling material for the 
preparation of thermally conducting and electrically insulating polymeric composites [3-4]. Graphene 
nanosheets are two dimensional materials comprised of six-membered aromatic ring structures that 
contain sp2 hybridized carbon atoms. They demonstrate clear advantages in improving the properties 
of polymers for electrical applications, due to their excellent electric conductivity and thermal 
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conductivity profiles and their good mechanical properties [5-7]. The use of graphene nanosheets 
(and/or hexagonal boron nitride) as filling materials not only confer excellent thermally conducting 
and electrically insulating properties to a polymer, but also results in efficient dispersal of filling 
materials throughout the polymer matrix [8-11]. In this study, we have prepared a series of thermally 
conducting and electrically insulating composites using hexagonal boron nitride and graphene 
nanosheets as filling materials. The performance of these filling materials on the thermal conducting, 
electrical insulating, thermal resistance and fracture morphology of the resulting composite have been 
investigated. These results show that a composite containing 6%BNOTAB+4%GNP has improved 
thermal conductivity properties when compared to pure epoxy resin composite, indicating that it 
should be a better material for electronic packaging applications.  

2.  Experimental 

2.1.  Materials 
WSR6101 epoxy resin was purchased from Nantong Xingchen Synthetic Material Co. Ltd. 
Methylhexahydrophthalic anhydride (Me HHP A) with a purity of 98% was purchased from J&K 
Scientific Ltd. 2,4,6-Tris(diethylaminomethyl)phenol (DMP-30, curing catalyst) was purchased from 
Aladdin Shanghai Biochemical Technology Co., Ltd. Hexagonal boron nitride (h-BN) with a purity of 
99.9% was purchased from Zibo Jonye Ceramics Technology Co., Ltd. Analytical reagent grade Octyl 
trimethyl ammonium bromide (OTAB) was purchased from Shanghai Chemical Reagent Co. , Ltd. 
Graphene nanosheets (GNP) with a purity of 99.9% and average thickness of 5-8 nm were purchased 
from JCNANO Tech Co., Ltd.  

2.2.  Sample preparation 
(1) Surface modification of boron nitride powder 

Modification processes were carried out using the following procedures:  
Boron nitride powder was placed in a furnace box and heated at 1000 ℃ for 2h, before being 

allowed to cool naturally to room temperature. 500 mL of an OTAB solution was prepared with a 
concentration of 0.01mol/L and its pH adjusted to 8.0. After adding 25 g of BNO powder to the OTAB 
solution, the resultant dispersion was stirred for 1h before being super-sonicated for 30min. The 
dispersion was then stirred and heated at 80 ℃ for 5h. High-speed centrifugation was then used to 
separate the particles from the dispersion. OTAB modified boron nitride powder (BNOTA) was 
obtained by thoroughly rinsing the particles with distilled water (3x) and drying the resultant particles 
under vacuum.  

(2) Preparation of epoxy resin composites 
Defined amounts of BNOTAB powder and graphene nanosheets (or both additives) were added to 

acetone, and the resultant dispersion stirred for 20 min, followed by super-sonication for 30 min. 
Epoxy resin was then added to the dispersion and the mixture stirred for 1h, before being super-
sonicated for a further 30min. The majority of the solvent was then evaporated by stirring the mixture 
for 1h at 80 ℃. Curing agent (containing 75% EP by weight) and curing accelerator (containing 5% 
EP by weight) was then added, and the mixture stirred vigorously using a mechanical stirrer. Once this 
mixture became viscous, it was injected into a mould that had been preheated to 90 ℃ under vacuum 

for 45 min, which was then heated at a specific temperature for a different length of time (100 ℃/1 h; 

120 ℃/2 h; 150 ℃/4 h; 180 ℃/2h; 200 ℃/2 h). The mould was then cooled to room temperature to 
afford the desired epoxy resin thermal conducting composites to be recovered.  

2.3.  Tests and characterization of composite materials 
Infrared spectroscopic analysis was carried out using a Bruker FTIR (TENSOR 27), with an ATR 
accessory used for each analysis. The wavenumber range was set from 400-4000 cm-1, with data for 
each spectrum being collected as an average of 16-time scans. The morphology of BN powders and 
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cross-sections of composites were examined using a JSM-7600F JEOL SEM, after coating the 
surfaces of samples with thin gold films. The thermal conductivity of these composites was measured 
using a DRL-Ⅲ thermal conductivity measuring device according to ASTM D5470-2006 standards. 
The volume electrical resistivity of material was measured using a Yangzhou Subo SBZC-90E electric 
resistance measuring device following testing procedures specified by GB1410-78 standards. 
Thermogravimetric analyses were carried out using a NETZSCH TG-209F3 thermogravimetric 
analyser to evaluate the thermal stability of each composite. Samples were analysed in a nitrogen 
atmosphere, with the chamber temperature raised from room temperature to 600℃, using a heating 

rate of 20 ℃ /min. The glass transition temperature of the composites was measured using a 
NETZSCH DSC-214 differential scanning calorimeter. Samples were analysed under a nitrogen 
atmosphere, with the chamber temperature raised from 25 ℃ to 600 ℃, using a heating rate of 20 ℃
/min.  

3.  Results and discussion  

3.1.  Infrared spectra of modified BN 
Infrared spectra of untreated BN, BNO after heat treatment and BNOTAB modified by OTAB are 
shown in Figure 1.  

 

Fig. 1 FT-IR spectra of BN, BNO and BNOTAB 

Absorption bands are visible at 1383 and 762 cm-1 corresponding to B-N stretching and bending 
vibrations respectively. The appearance of a strong absorption band at 3201 cm-1 in the BNO spectrum 

indicates the presence of B-OH groups on the surface of the BN particles [12-13]. C-H stretching 
vibration peaks for alkyl groups that appear at 2921 and 2851 cm-1 in the spectrum of BNOTAB 
demonstrate the presence of electrostatic interactions between the positive charges of OTAB 
molecules and the negative charges of the boron nitride lamellar. These observations clearly indicate 
that our derivatization process results in boron nitride particles with OTAB molecules successfully 
attached to their surface.  

3.2.  Microstructure of epoxy resin composites 
Figure 2 shows SEM images of pure epoxy resin, modified boron nitride particles and epoxy resin 
composites. Typical fracture features for thermosetting materials are visible, including the smooth 
fracture surface and cracks extending in the same linear direction seen for pure epoxy resin in Figure 2 
(a). Figure 2 (b) shows that lamellar structures of different sizes have been formed using surface 
modified BNOTAB particles, with an average thickness of their lamellar structures of around 100 nm. 
Figures 2 (c) and 2 (d) are SEM images of epoxy resin composites containing 10% BNOTAB and 6% 
BNOTAB + 4% GNP filling materials respectively. Rough fractures with blurred boundaries, cracks 
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extending in non-parallel directions, and dimples of different size can be observed in both images. 
Meanwhile, there is no evidence of any agglomeration of BNOTAB and GNP in these images, 
indicating that these filling materials are evenly dispersed throughout the epoxy resin matrix.  

  

  

Fig. 2 SEM images of fractured surface of composites containing (a) Pure epoxy; (b) BNOTAB; (c) 
Modified BN; and (d) 6%BNOTAB+4%GNP 

3.3.  Thermal conducting properties of the epoxy resin composites 
The effect of the weight ratio of BNOTAB to GNP (both used at total mass of 10%) on the thermal 
conducting properties of the epoxy resin composites were then investigated, by increasing the mass 
percentage of GNP from 0 to 40%. It was found that raising the BNOTAB content was increased from 
0 to 10 % resulted in increase in the coefficient of thermal conductivity of the composites from 0.23 
W/ (m·K) to 0.41 W/ (m·K) (See Figure 3). The coefficient of thermal conductivity of these 
composites could be raised further, by increasing the weight ratio of BNOTAB to GNP, with a 
maximum coefficient of thermal conductivity of 0.48 W/ (m·K) (109% higher than pure epoxy resin) 
achieved when the weight ratio reached 6:4. This increase in the coefficient of thermal conductivity is 
caused by the excellent thermal conducting properties of GNP, which counteract the negative effects 
that BNOTAB has on the thermal conducting properties of the composite. Therefore, it appears that 
the uniform dispersion of GNP and BNOTAB throughout the composite results in an increase in the 
number of thermal conducting paths, leading to more efficient thermal conducting networks within 
these resin matrices [13].  

 

Fig. 3 Plot of thermal conductivities of composites versus the proportion of BNOTAB/GNP 
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3.4.  Electrical insulating properties of epoxy resin composites 
Only composites that display excellent electrical insulating and thermal conducting properties are 
suitable for electrical packaging applications. Consequently, the volume electrical resistivity (VER) of 
pure epoxy resin, and epoxy resin composites containing different amounts of BNOTAB/GNP, were 
determined (See Table 1). These data reveal that the VER of epoxy resin was increased from 
7.68×1016 Ω·cm to 1.14×1017 Ω·cm when the content of BNOTAB was raised from 0 to 10%. This 
increase in VER indicates that the BN particles convey excellent electrical insulating properties to the 
composite. Graphene nanosheets exhibit excellent electrical conducting properties, therefore the VER 
was reduced when the percentage of GNP in the composites was increased. When the GNP content 
reached 4%, the volume electrical resistivity of the epoxy resin composite was decreased to 6.12×1015 

Ω·cm, however this value means that this composite still has excellent electrical insulating properties 
that are suitable for electrical packaging applications.  

Table 1. Volume electrical resistivity of epoxy composites 

Content of filling material 
Volume electrical resistivity (Ω·cm) 

BNOTAB (%) GNP (%) 
0 0 7.68×1016 

10 0 1.14×1017 
9 1 3.82×1016 
8 2 2.52×1016 
6 4 6.12×1015 

3.5.  Thermal resistance property of epoxy resin composites  
Thermogravimetric analysis of pure epoxy resin and the composite containing 6%BNOTAB+4%GNP 
were carried out (See Figure 4), whose thermal decomposition temperatures (at a mass loss rate of 
10%) are also listed in Table 2. This data revealed that the epoxy resin and its composite both started 
to decompose at 200 ℃, with the rate of decomposition of both samples occurring most rapidly 

between 350-450 ℃. No significant differences between the thermogravimetric analysis graphs of 
pure epoxy resin and the composite were observed, indicating that their mechanism of decomposition 
is the same. Data from Table 2 also reveals that the overall decomposition temperature of the 
composite is higher than for pure epoxy resin, so it may be concluded that the presence of boron 
nitride and graphene nanosheets improves the thermal resistance properties of the resin. It is proposed 
that a “defect pathway” effect may be operating to explain improvement in thermal resistance, 
whereby a continuous network of boron nitride and graphene nanosheets serve to effectively block the 
release of volatile degradation products from the resin, thus promoted the formation of localized 
carbon residues [14].  

 

Fig. 4 TGA curves of pure epoxy and EP/BONTAB/GNP composites 
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Table 2. Thermal decomposition temperatures of pure epoxy and the EP/BONTAB/GNP composites 

Content of filling material Thermal decomposition temperature at 
T10 (℃) BNOTAB (%) GNP (%) 

0 0 367.8 
10 0 370.5 
9 1 373.9 
8 2 375.0 
6 4 374.1 

 
T10 corresponds to the thermal decomposition temperature at a mass loss rate of 10% 
Differential Scanning Calorimetry curves revealed that the glass transition temperature (Tg) of 

epoxy resin composites containing increased levels of BNOTAB and/or GNP were improved when 
compared to pure epoxy resin. When the content of the filling material was 9%BNOTAB+1%GNP, 
the Tg of the composite reached 151.0 ℃, which is 15.0 ℃ higher than that for pure epoxy resin. When 

the content of the filling materials was 6%BNOTAB+4%GNP, the Tg of the composite was 146.0 ℃ 

which is still 10.0 ℃ higher than for pure epoxy resin. This means that these composite resins should 
be able to function at higher temperatures, with their increase in Tg likely to be caused by the presence 
of uniformly distributed networks within the resin. These networks may operate to hinder the 
movement of polymer chains, thus lowering the free volume of the composite, and increasing its 
overall crosslinking density. However, it was also found that very high levels of GNP content in 
BNOTAB and GNP composites, resulted in a decrease in their Tg values. This is potentially due to 
competing formation of clusters of filling material within the body of the composite resin, that result 
in decrease in its homogeneity that leads to an overall increase in the free volume of its polymer 
network [15].  

 

Fig. 5 DSC curves of pure epoxy and the EP/BONTAB/GNP composites 

4.  Conclusion 
We have shown that incorporation of OTAB modified boron nitride particles and graphene nanosheets 
into epoxy resins affords composite resins with excellent thermal conducting and electrical insulating 
properties. SEM studies reveal that these boron nitride particles and graphene nanosheets are evenly 
dispersed throughout the epoxy resin matrix. The thermal conductivities of these composite resins 
were found to increase with increased GNP content, whilst their volume of electrical resistivity only 
decreased slightly. Their thermal resistance, decomposition temperatures and glass transition 
temperature properties were found to be improved when compared to pure epoxy resin, indicating that 
these composites are potentially useful materials for electronic packaging applications.  
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