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Abstract. Costs of maintenance and loss of power generation caused by the faults of 

wind turbines gearboxes are the main components of operation costs for a wind farm. 

Therefore, the technology of condition monitoring and fault recognition for wind 

turbines gearboxes is becoming a hot topic. A condition monitoring and fault 

recognition system (CMFRS) is presented for CBM of wind turbines gearboxes in this 

paper. The vibration signals from acceleration sensors at different locations of gearbox 

and the data from supervisory control and data acquisition (SCADA) system are 

collected to CMFRS. Then the feature extraction and optimization algorithm is applied 

to these operational data. Furthermore, to recognize the fault of gearboxes, the GSO-

LSSVR algorithm is proposed, combining the least squares support vector regression 

machine (LSSVR) with the Glowworm Swarm Optimization (GSO) algorithm. Finally, 

the results show that the fault recognition system used in this paper has a high rate for 

identifying three states of wind turbines’ gears; besides, the combination of date 

features can affect the identifying rate and the selection optimization algorithm 

presented in this paper can get a pretty good date feature subset for the fault 

recognition. 

1.  Introduction 

The failure-rate of wind turbines is higher than the traditional generating units because their gearboxes 

suffer from irregular loads and instantaneous shock in the harsh natural environment. Therefore, costs 

of maintenance and loss of power generation caused by the faults are the main components of 

operation costs for a wind farm. Among various failures, the downtime caused by gearbox’s faults is 

the longest, and the maintenance cost is the highest [1].  

Over the past ten years, planned maintenance and corrective maintenance have been implemented 

in China’s wind farms. Condition Monitoring Systems (CMS) for wind turbines are usually 

transplanted from other industrial applications, such as the Turbine Diagnosis and Management 

System for the thermal power plants. But their performance is not as good as they once were because 

of time-varying operational conditions, complicated compact gearboxes and uncertain fault 

characteristics. Therefore, the technology of condition monitoring and state recognition for wind 

turbines gearboxes is becoming a hot topic. 

Here are some of the existing works in this field: Hameed2009 reviewed different techniques, 

methodologies and algorithms developed for the monitoring of the performance of wind turbine as 

well as for an early fault detection to keep away the wind turbines from catastrophic conditions due to 
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sudden breakdowns [2]. Yang2010 uses a continuous-wavelet-transform-based adaptive filter to 

analyses the generator output power and rotational speed for deriving a fault detection signal [3]. 

Guo2011 proposed a new condition monitoring method using temperature trend analysis for a wind 

turbine gearbox [4]. Nejad2014 introduced a fatigue reliability-based maintenance plan for wind 

turbine gearbox components [5]. Hu2015 presented a method combining ensemble intrinsic time-scale 

decomposition (EITD) with wavelet packet transform (WPT) and correlation dimension (CD) for 

decomposing non-stationary vibration signal and diagnosing wind turbine faults [6]. Santos2015 

proposed a multi-sensory system for fault diagnosis in wind turbines, combined with a support vector 

machines (SVM) data-mining solution for the classification of the operational state of the turbine [7]. 

Jingling Chen2016 used empirical Wavelet Transform (EWT) to extract inherent modulation 

information by decomposing signal into mono-components under an orthogonal basis [8]. Xiaowang 

Chen2016 proposed an improvement with fine time–frequency resolution and free from interferences 

for highly non-stationary multi-component signals, by exploiting the merits of iterative generalized 

demodulation [9].  

In this paper, a condition monitoring and fault recognition system (CMFRS) is presented for CBM 

of wind turbines’ gearboxes. The vibration signals from acceleration sensors and the data from 

supervisory control and data acquisition (SCADA) system are collected to CMFRS. Then data features 

are collected, optimized and analyzed to recognize the condition of the wind turbines’ gearboxes. The 

structure of the paper is going to be as the following: in section 2 the structure and details of the 

condition monitoring system will be introduced; Then the methods of feature extraction and 

optimization will be explained in section 3; Furthermore, in section 4 the fault recognition method 

based on the GSO-LSSVR algorithm is proposed; next, the identifying results of CMFRS for three 

kinds of health state of wind turbines’ gears will be discussed in Section 5; finally, Conclusions will be 

given in Section 6. 

2.  Condition Monitoring Systems 

A new CMS was developed to collect the vibration signals and SCADA data. It can also be used to 

monitor the wind turbine in shutdown or outage condition because it has the capacity of data storage 

and continuous power supply. 

As shown in Figure 1, the new system includes several data acquisition units (DAU) and a wind 

farm central server. The data acquisition unit includes a controller, a vibration data acquisition module 

(VAM), some sensors, a SCADA data acquisition module (SCADAM), a data storage module (DSM), 

an uninterruptible power supply module (UPS), a DSP data processing module (DPM) and a data 

communication module (DCM). 

 

Figure 1. Structure of CMS 
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The VAM acquires vibration signals form sensors installed at different location of wind turbines 

and the SCADAM receive SCADA data from a programmable logic controller (PLC) connected with 

the main controlling system of wind turbines. The DPM takes charge of saving original data in the 

DSM according to the preset storage strategy and extracting features from the original data. The UPS 

ensures the CMS to collect complete data when the wind turbine is shutdown or outage. The DCM 

communicates with the wind farm central server through TCP/IP communication protocol. The 

functions of all modules are integrated in the main controller. 

3.  Features Extraction and Optimization 

3.1.  Signal Denoising and Feature Extraction 

The collected signal data must be denoised to improve the signal-noise ratio because concerned fault 

information is often susceptible to strong background noise and signal transmission channel; in 

addition, the vibration signal of the wind turbine is generally nonlinear and non-stationary. It is 

necessary to adopt the nonlinear denoising method to suppress and eliminate the noise effectively. 

Common nonlinear denoising methods are: empirical mode decomposition (EMD), wavelet denoising, 

Kalman filter, and phase space reconstruction. The EMD method is employed in this paper because it 

does not need to know the priori information of the signal and the noise and it can adaptively 

decompose the signal into a series of different scales of Intrinsic Mode Function (IMF), then combine 

some modal components to form low-pass, High-pass, or band-pass filters [10]. 

After denoising process, the features of the vibration signal are extracted as a health state feature 

set in order to obtain the health information of the gearbox. In this paper, a health states feature set is 

composed of 23 features, including time-domain [11], frequency-domain [12] and wavelet packet 

energy features [13]. The time domain features are Mean, Absolute Mean (AM), Range, Standard 

Deviation (SD), Root Mean Square (RMS), Mean Square Amplitude (MSA), Skewness, Kurtosis, 

Shape Factor (SF), Crest Factor (CF), Impulse Factor (IF), and Clearance Index (CI). The frequency 

domain characteristic parameters mainly includes the barycenter of frequency spectrum(BFS), the 

mean square frequency (MSF), the root mean square frequency (RMSF), the frequency variance (FV) 

and the frequency standard deviation (FSD).  

The wavelet packet energy features are adopted as the time-frequency features in this paper, 

because wavelet packet decomposition has the ability of multi-resolution analysis in which the original 

signal can be decomposed into different frequency bands and each signal band contains the 

characteristic information of original signal in different frequency range. The signal of different fault 

has different energy distribution in the frequency bands decomposed from wavelet packet, so the 

energy distribution in the frequency bands can be used as the time-frequency features of the health 

states of wind turbine gearboxes [13].  

3.2.  Optimization Algorithm of data features 

The feature set extracted from signal must be optimized for reducing data redundancy and improving 

the computational efficiency in the health management of wind turbines. The common optimization 

methods include principal component analysis (PCA) [14], linear discriminant analysis (LDA) [15] 

and distance evaluation method [16, 17]. An improved distance evaluation method is proposed to find 

a features subset from the 23 extracted features in which members are linear independent and sensitive 

to health state classification in this paper. 

The health state features set is S={sijk}, where sijk means the ith feature under the jth state and the 

kth sample; i=1, 2,... M, j=1, 2,... N, k=1, 2,... K; M is the quantity of concerned health states; the 

sample quantity of each state is K; N is the quantity of features needing to be optimized. The process 

of optimization is explained as follow. 

Step 1: To the ith feature, the intra-cluster distance Dij (DIC) and the center of cluster Cij (COC) in 

jth state are calculated as follow: 
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    (1) 

                        (2) 

Step2: the average intra-cluster distance (AID) and average between-clusters distance (ABD) 

 of the ith feature are obtained by the following formula: 

                                  (3) 

      (4) 

Step 3: To the ith feature, the intra-cluster constraint factor (ICF) , the between-cluster 

constraint factor (BCF) and the correction factor  are calculated as follow: 

                    (5) 

                                        

                             

(6) 

                             (7) 

Generally, the smaller two constraint factors are, the better the classification result is. The 

correction factor  is defined to correct the sensitivity coefficient, where α is the attenuation factor, 

whose value is 0.5 or 1 or 2. 

Step 4: the sensitivity coefficient  is defined to evaluate the sensitivity of the ith feature for the 

health state classification, and it is calculated as follow: 

                                      (8) 

Step 5: a sensitivity vector  is constructed after the 

sensitivity coefficients  are sorted. 

Step 6: a correlation coefficients matrix  is defined, where  shows the linear 

correlation of two features  and  which distribute the health state of 

wind turbines.  
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                              (10) 

Step 7: according to the sensitivity vector  and correlation coefficients matrix , the most 

sensitive and linear independent state features are selected to be an optimized features set which will 

be used in state recognized algorithm later.  

4.  Fault Recognize Based on GSO-LSSVR 

4.1.  Least squares support vector regression 

The basic idea of least squares support vector regression algorithm (LSSVR) is: to select a non-linear 

transformation, taking a multidimensional vector as the input vector and a one-dimensional vector as 

the output vector; then map from the original space to a high dimensional feature space and construct 

optimal linear regression function; next replace dot product in the high-dimensional feature space with 

the kernel function in original space, using the structural risk minimization principle; thus transform 

solving nonlinear estimation function into solving linear estimation function in the high dimensional 

feature space [18].  

When the LSSVR modelling is trained, the penalty coefficient C and the kernel parameters  will 

directly affect the accuracy of the model. Usually these parameters are confirmed by trial-and-error 

method, which is generally subject to the user's subjective experience, but in fact it is time-consuming 

and of no-guaranteed accuracy.  

To avoid the inefficiency and aimlessness of common method, an optimization algorithm is used to 

search the best combination of punitive coefficient C and kernel parameter  automatically in this 

paper.  

4.2.  GSO algorithm 

The idea of glowworm swarm optimization (GSO) algorithm [19] originates from the natural 

phenomenon that glowworms use light-emitting to attract mates. The optimized object is represented 

as the position of glowworm swarm. In each iteration, the glowworm will be attracted to the 

companion who has more fluorescein in its perception scope, finally the best position is achieved as 

the optimization goal. 

4.3.  GSO-LSSVR algorithm 

The penalty coefficient C and the kernel parameters  of LSSVR are optimized to find an optimal 

combination of two parameters by using GSO algorithm.  

The process of GSO-LSSVR is explained as follows and shown in Figure 2: 
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Figure 2. Flow Chart of GSOLSSVR Algorithm 

Step 1: Initialize the LSSVR, GSO parameters. 

The LSSVR model is constructed and penalty coefficient C and the kernel parameter  of LSSVR 

model are set randomly as the initial position of the glowworm in the GSO algorithm. 

Step 2: Calculate the fitness function. The fitness function in GSO algorithm is shown as follow: 

                                         (11)  

e N is the quantity of samples;  is the output of LSSVR;  is the target of training; e is a real 

number great than 0. 

Step 3: Update fluorescein, location and decision scope until the termination condition is met. 

Step 4: Construct the LSSVR model with the best combination of penalty coefficient C and the 

kernel parameter exported from GSO algorithm. 

5.  Verification and Analysis 

5.1.  Raw data 

Three 1.5MW wind turbines with different health status have been selected in a wind farm located in 

Jilin province of China. Vibration sensors of the CMS are installed in four key positions of the gear 

box which monitor the low speed shaft, the planetary gear, the middle shaft and the high-speed shaft. 

As shown in Table 1, a total of 360 groups at different speed and in different states are tested, while 

the sampling frequency of the vibration sensor is 8000Hz, the sampling interval is 10 minutes, and the 

data length is 10 seconds. Figure 3 shows the three typical vibration examples of high speed gear 

under different health states.  

Table 1. Quantity of Vibration Samples for Testing. 

Health status Sample Size Working Condition State Encoding 

Normal Gear 104 13 1 

Worn Gear 112 14 2 

Cracked Gear 114 18 3 
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(a) Normal state 

 
(b) The state of worn teeth 

 
(c) The state of broken teeth 

Figure 3. Radial Vibration Signals of High Speed Shaft 

5.2.  Data Processing 

The EMD process can be equivalent to the filtering, i.e. different characteristic scale fluctuation 

amplitude variation can be clearly observed, because the IMF is ordered in accordance with the 

frequency, thus the localization effect of time domain is achieved [20]. The noise signal is usually in 

high frequency, and the denoised signal is obtained by denoising the decomposed high frequency IMF 

components. Figure 4 and Figure 5 are spectrograms of the original signal and the EMD denoising 

signal. From the signal spectrum, the noise reduction and detail deletion in the high frequency part of 

the signal can be seen clearly after noise reduction by EMD.  

 

Figure 4. Time-domain diagram of the original signal and denosing signal 
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Figure 5. Spectrum of the original signal and denoising signal 

5.3.  Feature Extraction and Optimization 

Using the data feature extraction formula, the 12 kinds of time-domain features, 3 kinds of frequency-

domain characteristics and 8 groups of wavelet packet energy features are extracted.  

There are some viewpoints which can be observed from the extracted features:  

1) The features have different sensitivity levels with regard to rotate speeds and gear states. For 

example, the range and standard deviation are very sensitive to the gear states and operating modes, 

and the impulse index and clearance index are only different in the gear states, but not sensitive to the 

rotate speed, however the skewness completely unable to reflect the recognition rules.  

2) Some features are more sensitive to a certain state. For example, kurtosis, crest index and 

wavelet packet 7 energy ratio of are more sensitive to the gear with broken tooth and BFS is more 

sensitive to worn teeth state. 

3) Some Features values have strong correlation, such as the absolute mean, RMS and MSA. 

The above analysis shows that more features are not the guarantee of accuracy in the state 

recognition algorithm. The state features must be selected optimally for reducing the redundancy and 

raising efficiency according to their sensitivity and correlation. Therefore, an optimization algorithm 

mentioned above is used to calculate the 23-feature’s sensitivity to the gear states in this paper and 

figure 6 shows the sensitivity order of the 23 kinds of data features. Furthermore these 23 state 

features are optimally chosen by the sensitivity combined with the correlation analysis and the result is 

shown in Table 2. There are three groups of combinations if the optimal feature subset has two 

features; two groups of combination when the subset has three features; and only one set of 

combinations when the subset includes four or five features.  
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Figure 6. Sensitivity Order of Different Features 

Table 2. Optimization Combination Result of Data Features. 

Feature 

Quantity 
Detail of Combination 

Recognition 

Rate 
Rank Total 

2 

Shape indicator, Range 97.78% 4 253 

BFS, Range 97.22% 15 253 

RMSF, Range 97.22% 17 253 

3 
Absolute mean, Range, BFS 97.78% 55 1771 

BFS, Shape indicator, RMS 97.78% 110 1771 

4 Absolute mean, Kurtosis, Shape indicator, BFS 98.89% 96 8855 

5 
Absolute mean, Range, Shape indicator, BFS, 

1st wavelet packet energy ratio 
98.33% 612 33649 

 

All the combination of the 2, 3, 4 and 5 features in the all 23 features have been applied in the state 

recognition algorithm. The result shows that the recognizing rates of the optimal combination of the 

features provided in Table 2 are not the best, but they rank the top.  

5.4.  fault identification 

The absolute mean value, range, shape indicator, BFS and 1st wavelet packet energy ratio are used as 

the state feature combination, and the training set is composed of 150 sets of signal data totally, which 

are 50 sets for 13 kinds of operational conditions in normal state, 50 sets for 14 kinds of operational 

conditions in worn teeth state and 50 sets for 18 kinds of operational conditions in broken teeth state. 

All the training sets are selected randomly, and remaining data are test sets. Then GSO-LSSVR 

algorithm is used for state recognition. The recognizing rates of 10 state recognition experiments are 

shown in Table 3.  

Table 3. Recognition Rate of 10 Experiments for Gearbox in Full Operational Conditions. 

 1 2 3 4 5 6 7 8 9 10 

Normal 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Worn teeth 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Broken teeth 
95.74

% 

92.55

% 

89.36

% 

85.11

% 

90.43

% 

98.94

% 

94.68

% 

96.81

% 

91.49

% 

87.23

% 

 

Data are selected randomly in half operational conditions of normal state, worn teeth state and 

broken teeth state, so a total of 176 sets of data are used for the training sets, and data in another half 
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conditions are used for the testing sets. Finally, GSO-LSSVR algorithm is used for state recognition. 

The recognizing rates of 10 state recognition experiments are shown in Table 4.  

Table 4. Recognition Rate of the 10 Experiments for Gearbox in Different Operational Condition. 

 1 2 3 4 5 6 7 8 9 10 

Normal 80.36% 83.93% 100% 94.64% 89.29% 100% 100% 91.07% 100% 92.86% 

Worn Teeth 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Broken 

Teeth 
100% 98.61% 91.67% 100% 93.06% 80.56% 90.28% 84.72% 83.33% 86.11% 

 

The table 3 and table 4 show that, the method proposed in this paper provides a better recognition 

rate for the worn teeth state, which is 100%, but the recognition rate for the broken teeth state is not so 

good. When the training set covers the whole working conditions, the recognition rate is obviously 

better, but the training set contains only part of the operating conditions and the test set is in different 

conditions, the recognition rate drop out significantly, especially for the normal state.  

6.  Conclusion 

A condition monitoring and state recognition system (CMSRS) presented in this paper adopts a 

redesigned CMS for wind turbine gearboxes. The vibration signals and SCADA data are collected to 

CMSRS. Then 5 optimal features are selected from 23 kinds of state features through an improved 

distance evaluation method combined with correlation analysis. Finally, the GSO-LSSVR algorithm is 

applied to recognize the three kinds of health states of high speed gears of wind turbines in different 

operational conditions. As a result, the following conclusion can be acquired from this work.  

The combination of state features can affect the recognizing rate of the state recognition method. 

The selection optimization algorithm presented in this paper can get a pretty good state feature subset, 

although it is not the best one.  

The state recognition algorithm used in this paper has a high recognizing rate in the identification 

of three kinds of health state of gears of wind turbines and the training set composed by different 

operational condition has great influence on the recognizing rate.  

Future works will be focus on further research for the state recognition method based on the 

combination of SCADA data and vibration signals.  
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