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Abstract. Ideal plastic flows are those for which all material elements follow minimum work 

paths. The general equations for steady and nonsteady planar ideal flows in Tresca solids have 

been given elsewhere. The present paper focuses on nonsteady planar ideal flows in anisotropic 

plasticity. In particular, the existence of such flows is proven under a certain assumption 

concerning the orientation of principal stress trajectories at the initial instant. It is also shown 

that the system of kinematic equations is hyperbolic. This system can be treated separately 

from the stress equations. The original ideal flow theory is widely used as the basis for inverse 

methods for the preliminary design of metal forming processes driven by minimum plastic 

work. The new theory extends this area of application to anisotropic materials. 

1. Introduction 

The ideal flow theory has long been associated with solids satisfying Tresca’s yield criterion and its 

associated flow rule [1]. The ideal flow condition is that trajectories of the major principal stress are 

fixed in the material. This condition is an additional equation to the standard system of equations of 

plasticity theory. However, in many cases it is possible to show that a large class of solutions exists for 

this over-determined system of equations. In particular, a proof of the existence of steady ideal flows 

in Tresca solids has been provided in [2]. This result has been extended to nonsteady flows in [1]. 

Ideal flows result in maximum uniformity and minimum resistance and, therefore, are useful for the 

preliminary design of material forming processes [3]. A review of the ideal flow theory and ideal flow 

solutions has been provided in [4]. Solutions for anisotropic materials are only available in the case of 

sheet metal forming (for example, [5]). On the other hand, plastic anisotropy is a common property of 

many materials in bulk material forming. It is therefore of interest and importance to extend the bulk 

ideal flow theory to such materials. A proof of the existence of steady planar ideal solutions for 

orthotropic materials has been given in [6]. This ideal flow theory is based on the model of anisotropic 
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plasticity proposed in [7] and the yield criterion proposed in [8]. The objective of the present paper is 

to extend the proof given in [6] to nonsteady flow.  

2. Material model 

The plane strain yield criterion of any incompressible anisotropic material which complies with the 

principle of maximum plastic dissipation is expressed solely in terms of the stress variables 

  2xx yys     and xy   [8]. Here xx , yy  and xy  are the components of the stress tensor 

in a Cartesian coordinate system  ,x y . This yield criterion is represented as a unique contour in the 

Mohr stress space (Fig. 1
a
). Let us introduce another Cartesian coordinate system  ', 'x y  in the plane 

of deformation. The corresponding stress components are denoted as 'xx , 'yy  and 'xy . 

Consequently, ' 'xy   and  ' ' ' 2xx yys    . Let   be the angle between the 's   axis and the 

outward normal to the yield contour (Fig. 1
a
). It is evident that there are primed coordinate systems in 

which 0  . One of such systems is shown in Fig.1
b
. Assume that the axes of the primed system are 

tangent to the principal stress trajectories at a given point M. Then, point M corresponds to point P in 

the Mohr stress space and, according to the associated flow rule, the principal stress and principal 

strain rate directions coincide at M. In this case the yield criterion can be written as 

 1 2 K     (1)  

where 1  and 2  are the principal stresses and K is a material constant. The subsequent analysis is 

valid for deformation processes in which the axes of the primed system are tangent to the principal 

stress trajectories at each point of the plastic region at the initial instant. Therefore, the yield criterion 

(1) is also valid in the entire plastic region at the initial instant. The evolution of plastic anisotropy is 

governed by the law proposed in [7]. 

3. Existence of ideal flow 

Let us introduce two coordinate systems; namely, a Cartesian coordinate system  ,x y  and a 

principal lines system  ,   (i.e. the coordinate curves of this coordinate system coincide with 

trajectories of the principal stress directions). In the principal lines coordinate system 1    

and 2  . Therefore, equation (1) becomes 

 K     (2) 

at the initial instant. According to the ideal flow condition the principal lines coordinate system is 

Lagrangian. In this case, the evolution law for plastic anisotropy proposed in [7] shows that equation 

(2) is valid throughout the process of deformation. Thus, in order to demonstrate the existence of ideal 

flow, it is necessary to prove that the yield criterion (2) and its associated flow rule are compatible 

with the ideal flow condition. The associated flow rule is equivalent to two equations: (i) the 

incompressibility equation and (ii) zero shear strain rate in the  ,   coordinate system. Let h  and 
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b) 

Figure 1. Yield contour in Mohr plane. 

h  be the scale factors for the coordinate curves of the  ,   coordinate system. It has been shown 

in [6] that in the case of the yield criterion (2) it is always possible to choose the principal lines 

coordinate system such that 

 1h h   . (3) 

This equation generalizes the corresponding equation in isotropic plasticity derived in [9]. Since the 

 ,   coordinate system is Lagrangian, the incompressibility equation requires that equation (3) is 

satisfied throughout the process of deformation. Since the shear strain rate vanishes in the  ,   

coordinate system, the    and    material lines are orthogonal throughout the process of 

deformation. Then, it follows from the geometry of Fig.2 that 

 

cos , sin , sin , cos .x h x h y h y h                      

 

(4) 

The compatibility equations are 
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Figure 2. Cartezian (x,y) and principal lines-based () coordinate systems. 

Substituting (4) into (5) yields 

 
cos sin sin cos ,

sin cos cos sin .

h h h h

h h h h

   

   

         

         

           

          
  (6) 

It is always possible to choose the Cartesian coordinate system such that 0   at a given point. 

Moreover, h  can be eliminated by means of (3). Then, equation (6) becomes 

 30, 0h h h h                   (7) 

where h h . Using a standard technique it is possible to show that this is a hyperbolic system of 

equations. Its solution can be found independently of the stress equations if appropriate boundary 

conditions are prescribed. Therefore, it remains to show that the stress equations are compatible with 

(7). The system of stress equations comprises the equilibrium equations and yield criterion (2). Since 

the shear stress vanishes in the  ,   coordinate system, the equilibrium equations are [10] 

    0, 0.h h h h                                 (8) 

Equations (2), (3) and (8) combine to give 0h K h         and 0h K h        . 

These equations can be immediately integrated to arrive at 

    1 2ln , ln .K h f K h f          (9) 

Here  1f   is independent of   and  2f   is independent of  . Eliminating ln h  in (9) leads to 

      1 2 .K f f         (10) 

It is evident that (10) is compatible with (2) if    1 2 1f f   . Therefore,  1f C   and 

 2 1f C    where C is independent of both   and  . Then, equation (10) becomes 

 ln , ln 1.K h C K h C        (11) 
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This equation connects the kinematic quantity h and the stress field in ideal flows. 

4. Conclusion 

It has been shown that non-trivial nonsteady planar ideal flow solutions exist in anisotropic plasticity 

assuming that the constitutive equation proposed in [7] is valid. An additional requirement, as 

compared to ideal flow in isotropic plasticity, is that the principal axes of anisotropy coincide with 

principal stress trajectories at the initial instant. If this condition is satisfied then equation (11) 

connects the kinematic quantity h and the stress field. The theory developed is important for training 

of high skill professionals in Russia [11]. 
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