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Abstract. A numerical investigation based on the Boundary Element Method (BEM) was
carried out to solve laminar forced convection with viscous dissipation in a straight regular
polygonal duct with H2 boundary conditions. The axial heat conduction in the fluid is
neglected. The effects of the Brinkman number and Nusselt number for both the wall heating
case and the wall cooling case are considered. Nusselt numbers are obtained as a function of
the number of sides of a regular polygonal duct and of the Brinkman number. The singular
points of the Brinkman number and the Brinkman number for a limited Nusselt number when
the total heat flux reached the heat flux that is generated internally by viscous dissipation
processes are obtained.

1. Introduction
The flow of Newtonian fluids and heat transfer through a straight non-circular duct has been studied
by many researchers in recent years. Laminar forced convection in a duct with constant axial and
peripheral wall heat flux (H2 boundary conditions) has been found in many different systems and
applications for very low conductive materials, such as electrical resistance heating, nuclear heating
and flow through micro-channels [1]. In particular, laminar forced convection heat transfer in ducts
with H2 boundary conditions has been studied by neglecting the effects of viscous dissipation [1].
Wang [2] presented results for H2 forced convection in rounded rectangular ducts. Etemad et al. [3],
using the Galerkin Finite Element Method solved the steady laminar flow and H2 heat transfer of non-
Newtonian fluids in equilateral triangular ducts. Ray and Misra [4] analysed the evaluation of pressure
drop and heat transfer characteristics of laminar forced convection through square and equilateral
triangular ducts with rounded corners, for H2 boundary conditions. Gao and Hartnett [5] using a Finite
Difference Method presented a numerical solution for fully developed laminar flow forced convection
of a power law non-Newtonian fluid in a rectangular duct under different combinations of H2
boundary conditions with adiabatic walls. Morini and Spiga [6] studied the velocity and temperature
distribution for Newtonian fluid laminar flow and forced convection heat transfer in rectangular ducts
for modified H2 thermal boundary conditions for eight versions involving different combinations of
heated and adiabatic walls. Shahmardan et al. [7] proposed an analytical solution for convective heat
transfer in rectangular ducts for H2 boundary conditions. Dharaiya and Kandlikar [8] performed a
numerical analysis of laminar forced convection in rectangular microchannels subject to H2 boundary
conditions. Wang [9], using an analytical method, calculated the Nusselt number for H2 heat transfer
in rectangular ducts with large aspect ratios. Wang [9] found the limiting value of the Nusselt number
for H2 boundary conditions approaches 2.9162 as the aspect ratio tends to infinity. Chung and Zhang
[10] numerically determined the Nusselt number from the thermally developing flow of non-
Newtonian fluids in rectangular ducts under H2 boundary conditions. Turgut [11] numerically
investigated laminar flow and heat transfer in smooth hexagonal ducts subject to H2 boundary
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conditions. Shahsavari et al. [12] presented an analytical solution for H2 heat transfer in
microchannels of hyperelliptical and regular polygonal cross sections for flow with a negligible
viscous dissipation effect.

The effects of viscous dissipation cannot by neglect for some systems, such as flow through ducts,
where the viscosity is large or flow in microchannels. In the literature, some analyses of the effects of
viscous dissipation of laminar forced convection in channels with H2 boundary conditions are
available. Barletta et al. [13] studied the effect of viscous dissipation for laminar flow in stadium-
shaped ducts with H2 boundary conditions. Sheikhalipour and Abbassi [14] investigated the viscous
dissipation effects in trapezoidal microchannels under H2 boundary conditions using the Finite
Difference Method. Rij et al. [15] studied the frictional and convective heat transfer characteristics of
rarified flows in rectangular microchannels with H2 boundary conditions. Sayed-Ahmed et al. [16]
analysed the Graetz problem for a Bingham plastic fluid in laminar tube flow for H2 boundary
conditions by taking account of viscous dissipation.

The aim of this study is analysis of the viscous dissipation effects on the laminar forced convection
in regular polygonal channels subject to H2 thermal boundary conditions. Teleszewski and Sorko [17]
provide a compact relationship for the Nusselt and Brinkman numbers for different values of sides in
regular polygonal channels under H1 boundary conditions with laminar viscous dissipation. No
compact solutions were found for the Nusselt number in the H2 case with viscous dissipation effects.
The influence of the Brinkman number on the Nusselt number for different values of sides of a regular
polygonal duct is obtained for the H2 thermal boundary conditions.

2. Mathematical model
The present analysis is based on the fully developed, laminar, steady, incompressible flow with a
constant dynamic viscosity µ and constant thermal conductivity k. Under the aforementioned
assumptions, the continuity (1), momentum (2) and energy (3) equations of a Newtonian fluid in a
straight duct with uniform heat flux are given as the form:
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where uz is the axial velocity, p is the pressure and Φ is the viscous dissipation therm. Figure 1 shows
the duct configuration and coordinate system.

Figure 1. Geometry of the regular polygonal duct.

In the momentum equation (2), the fully developed velocity profile uz(x,y) is obtained from the
boundary element method (BEM) with no-slip conditions on the duct wall uz=0. The BEM method
was also employed for the energy equation (3) with H2 boundary conditions. The H2 thermal
boundary conditions are defined as uniform peripheral wall heat flux (qw=const) with constant axial
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wall heat flux. The BEM numerical method is used to solve the momentum (2) and energy equations
(3) with 1000 constant elements and 40602 triangular cells. To determine the relative differences
between the numerical and analytical values, the numerical results obtained by BEM were compared
to the analytical values of the Nusselt number with the Brinkman number equal to zero for a circular
tube and square duct. For 1000 constant boundary elements and 40602 triangular cells in the duct
cross-section, the maximum relative differences in the Nusselt number were found to be ∆Nu=0.005%.

3. Results and discussion
The Brinkman number is commonly used to describe the ratio between the heats generated by viscous
forces to the heat exchanged by conduction at the walls. The Brinkman referred to the wall heat flux
density qw is given by
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where um is the mean velocity, L is the wetted perimeter of the cross-section, Dh is the hydraulic
diameter and A is the cross-sectional area. The wall heat transfer qw is positive wall heat transfer,
indicating that the fluid is heated by the wall and qw is negative, showing that the fluid is cooled by the
wall. The Nusselt number is obtained as
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where Tb is a bulk temperature.
In the literature [18-21], the relationship between the Brinkman number and the Nusselt number in

flows through a straight duct is described by the formula:
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where a1, a2, a3 are coefficients that depend on the geometrical shape of the cross sections. Similarly,
the Nusselt's relation to the Brinkman number is proposed in regular polygonal channels subject to H2
conditions
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where Nu0 is the Nusselt number with H2 boundary conditions on the assumption of negligible effects
due to viscous dissipation (Brq=0) and the shape factor σn. Nu0 and σn depend on the number of n-
sided regular polygonal ducts. For a circular pipe the analytical value of σn is equal to 1 [21] and the
fully developed average Nusselt number Nu0 is equal to 48/11 [21]. The Nusselt number Nu0 for H2
boundary conditions, the shape factor σn for regular polygonal ducts with the correlation coefficient R2

≈ 1, is proposed:
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where a, b, c, d, e, f, g, h coefficients are reported in Table 1. Note that the coefficients of shape factor
σn are calculated in recent paper [17].
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Table 1. Coefficients of the Eq. (8) to determine the Nusselt Nu0, and shape coefficients in regular
polygonal ducts.

Coefficients of
the Eq. (45) a b c d e f g h

Nu0_H2 1.076 -3.7656 1.36446 0.03714 1.000 -0.8052 0.31154 0.00851

σn[17] 0.9193 -0.6928 0.12666 -0.010517 1.000 -0.7082 0.1277 -0.010518

The total wall heat flux qw contains the positive thermal heat flux transferred to the walls qf and
negative heat flux generated by viscous dissipation qvd. In fact, when the total heat flux qw is positive,
then its direction is from the wall to the fluid and the fluid is heated by the wall, otherwise negative
total heat flux goes from the fluid to the wall and the fluid is cooled by the wall. Figure 2 shows the
variation of the Nusselt with the Brinkman number for different n side numbers of polygonal ducts:
n=3 (triangular shape), n=4 (square shape), n=5 (pentagon shape) and n=1000 (circular tube) for H2
boundary conditions. The trend of the Nusselt number and the Brinkman number with the number of
sides of a regular polygonal duct in the case of the boundary condition H2 is similar to that of the H1
condition [17]. When the heat flux generated by viscous dissipation and the Brinkman number equal
zero (qf/qw=1), then the Nusselt number corresponds to the fully developed flow in ducts without
viscous dissipation and Nu=Nu0. When the Brinkman number goes from zero to infinity, then the total
wall heat flux, the Brinkman number, the Nusselt number and the temperature difference between the
wall temperature and the fluid bulk temperature are positive. In this case, the value of the Nusselt
number decreases with the increase of the Brinkman number and the Nusselt number goes to zero
because the total wall heat flux goes to zero. Zanchini [21] proved that, whenever the wall heat flux
tends to zero, the asymptotic Nusselt number is zero. After this point total heat flux changes its sign
from positive to negative and the Nusselt number decreases with the increase in the Brinkman number.
When the temperature difference between wall temperature and fluid bulk temperature changes its
sign from positive to negative, then the singularity point is observed as shown in figure 2. In fact, at
the singularity point the power generated by the shear rate is balanced with the power transferred to
the wall [19, 20]. The singular points of the Brinkman number for H2 boundary conditions can be
obtained by the general solutions (7): Brqs=-1/(σnNu0). The function of the singular points of the
Brinkman number versus the number of sides of a regular polygonal duct (3 ≤ n ≤ 16) with H2
boundary conditions are reported in figure 3. A similar increasing trend is observed for singular points
of the Brinkman number versus number of sides of a regular polygonal duct in the case of the
boundary condition H2, as well as for the H1 boundary conditions [17].

Figure 2. Nusselt numbers versus the Brinkman
for different n side numbers of polygonal ducts
for H2 boundary conditions.

Figure 3. Variation of Brqs, Brqvd, Nuvd

with n for H2 boundary conditions.
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After the singularity point, the Nusselt number decreases with the increase in the Brinkman number
until the total heat flux reaches the heat flux generated internally by viscous dissipation processes and
the heat flux supplied by the wall into the fluid approaches zero. For a circular pipe with H1 boundary
conditions the analytical value of a limited Brinkman number Brqvd is equal to 1/8 [21] and the limited
Nusselt number Nuqvd is equal to 9.6 [22]. For a circular tube with H2 boundary conditions, this value
is also the same. When Br=Brqvd and Nu=Nuqvd then the ratio of heat flux generated by viscous
dissipation to the total wall heat flux is equal to one (qvd/qw=1). In figure 3, the limited Brinkman
number Brqvd and the limited Nusselt number Nuvd versus the number of sides of a regular polygonal
duct (3≤ n≤ 16) are given for H2 boundary conditions. The Brinkman number in singularity points,
the limited Brinkman and Nusselt number increase in the range of 3≤ n<∞ for polygonal ducts, with
the increasing value of n.

4. Conclusions
The BEM method has been used to numerically solve the momentum and the energy equations for the
laminar viscous dissipation of flow through a straight regular polygonal duct with H2 boundary
conditions under the assumption that the axial condition in the fluid is neglected. The effects of the
Brinkman number, the number of sides of a regular polygonal duct and the Nusselt number are studied.
A compact correlation between the Nusselt number and the Brinkman number has been proposed for
regular polygons with a different number of sides. The singular points of the Brinkman number and
the Brinkman number for a limited Nusselt number when the total heat flux reached heat flux is
generated by internally by viscous dissipation processes and the heat flux supplied by wall into the
fluid approaching zero is obtained. The value of the Brinkman number in a singularity, and the
Brinkman number for a limited Nusselt number increased with the number of sides increases for H2
boundary conditions.
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