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Abstract. To improve the efficiency of coordinating the lightweight goal and structural
performance for excavator boom, a knowledge-based optimization mechanism is proposed. By
this mechanism, the stress characteristics in excavator boom can be extracted automatically at
first. After that, stress characteristics knowledge can be acquired based on Monte Carlo
simulation and processed under multistate constraint. Depending on the cycle operation
between knowledge utilization module and optimization module, the strategy of utilizing
characteristic knowledge to guide the structural optimization can be realized. Finally, different
testing cases are taken in the structural optimization of excavator boom as examples to
demonstrate the feasibility and effectiveness of proposed method.

1. Introduction
Excavator is one kind of important engineering machinery, which often works under multiple working
conditions. How to improve its comprehensive performance is still a research focus [1, 2]. In particular,
boom is the largest load-bearing part in the working equipment of excavator and affects the
performance of excavator directly. But the contradictory between lightweight goal and structural
performance is usually difficult to be coordinated during the structural optimization of boom. This
difficulty is more serious when considering multiple working conditions. It is necessary to seek
effective methods to overcome above trouble. In recent years, many researches are focused on the
method of combining knowledge engineering with intelligent design to improve the efficiency of
design, which has been utilized in the design of aircraft, ships and other fields [3, 4]. However,
coordinating the lightweight goal and structural performance is still a bottleneck. Therefore, a new
strategy of automatic acquiring and utilizing stress characteristic knowledge for excavator boom
structural optimization is proposed in this paper.

2. A new knowledge-based intelligent optimization mechanism
In order to realize the automatic knowledge acquisition and utilize knowledge to guide the structural
optimization, a knowledge-based intelligent optimization mechanism is constructed, which is shown in
figure 1. This mechanism includes nine modules, some of which are illustrated as follows:

Solid modeling module is constructed to realize batch modeling by connecting VC++ with
Pro/Engineering. Boom samples required for characteristic extraction are generated by this module.

Kinematics and kinetostatics analysis module is constructed to calculate the forces of boom, which
are required to the loading of finite element analysis.

Characteristic extraction module is constructed to extract characteristic automatically by
connecting VC++ with ANSYS. This module includes two sub-modules, i.e., the stress survey
sub-module and the stress characteristic extraction sub-module. Firstly, using the stress survey
sub-module, the stress characteristic (SC) regions for boom samples can be identified by the method of
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finite element analysis and danger evaluation. And then, characteristic stress, i.e., the maximum stress
in every SC region, can be extracted by the stress characteristic extraction sub-module.

Data processing module is constructed for analyzing the data generated by characteristic extraction
module.

Knowledge processing module can be used for acquiring stress characteristic knowledge, which
includes the evaluation knowledge of characteristic regions, the influence evaluation knowledge and
the main influence factors (MIF) knowledge. All knowledge is saved in knowledge base.

Knowledge utilization module and knowledge-based intelligent optimization module are
constructed to form a loop. By these two modules, the strategy of utilizing characteristic knowledge to
guide the structural optimization can be realized.

Figure 1. Knowledge-based intelligent optimization mechanism.

3. Automatic acquisition and utilization of stress characteristic knowledge

3.1. The method of automatic knowledge acquisition
Knowledge acquisition is carried out before optimization, which includes two steps shown in figure 2.

Figure 2. The process of knowledge acquisition before optimization.

The first step is characteristic extraction. In order to coordinate stress distribution, the SC regions
need to be identified as the controlled targets. But most types of excavator boom have continuous
geometric shape, which makes it more difficult to determine the SC regions. Therefore, the
double-step stress survey [5] is carried out to explore the dangerous regions where the maximum stress
often occurred. Those dangerous regions are taken as SC regions, and the maximum stress in SC
region is called characteristic stress.
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The second step is knowledge processing. In this step, the evaluation knowledge for SC regions,
the influence evaluation knowledge and the MIF knowledge can be acquired. The first part is the
evaluation knowledge for SC region. After SC regions identified, the times of occurring danger for
every region is counted and the danger grade is evaluated. The second part is influence evaluation
knowledge, which includes absolute influence knowledge and relative influence knowledge. In order
to extract absolute influence knowledge for characteristic stress, the Monte Carlo simulation technique
and the Spearman rank correlation analysis method are used. The Spearman rank correlation models
between structure variables and characteristic stresses are constructed. And then, the Spearman
correlation coefficients are taken as the absolute influence knowledge for characteristic stresses.
Similarly, the absolute influence knowledge for lightweight goal is acquired. According to absolute
influence knowledge, the relative influence knowledge of the structure variables for characteristic
stress and lightweight goal are acquired.

After that, MIF knowledge is reasoned under multi-state constraints. The general expression of rule
is shown as Rule 1, and the meaning of the symbols is shown in table 1.

Rule1: IF 1c and 2c and ( 3c or 4c ) and 5c , THEN 1r and 2r ;

Table 1. Meaning of the symbols in Rule1.

Symbols Meaning

1c

Adjusting expectation for corresponding state;

1 1c = : In state1, lightweight priority. Stress is better to be reduced, but allowed to increase greatly.

1 2c = : In state2, lightweight priority. Stress is better to be reduced, but allowed to increase slightly.

1 3c = : In state3, stress reduction must be ensured.

2c The danger grade of SC regions.

3c The absolute influence knowledge for characteristic stress.

4c The absolute influence knowledge for lightweight goal.

5c The relative influence knowledge.

1r The influence grade for characteristic stress.

2r Adjusting weighting

3.2. The strategy of knowledge utilization.
Knowledge utilization module is connected with knowledge-based intelligent optimization module to
form a loop. According to the evolution population, the corresponding stress characteristic knowledge
saved in knowledge base can be acquired to guide the optimal searching of next generation. The cycle
of utilizing knowledge to guide optimization is shown in figure 3, which includes three important
parts.
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Figure 3. The cycle of utilizing knowledge to guide optimization.

Generate control vector of SC regions. Because of the different danger situation occurring in
different SC regions, the control strategy for SC regions should be identified before optimization.
According to the evaluation knowledge, SC regions can be divided into three classes. The first class
called main control region has the highest adjustment priority. The second class called conditional
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control region is often depended on geometry of boom. The third class called auxiliary control region
has the lowest adjustment priority. The control vector of SC regions is generated to guide knowledge
deployment and knowledge integration, as well as coordinate knowledge conflict.

3.2.1. Knowledge evolution. In order to match corresponding knowledge from knowledge base, it is
necessary to get the information of individuals firstly. For each individual, because excavator often
works under multiple working conditions, the characteristic stresses of individual in every condition
should be extracted and saved in a matrix. And then, the states of SC regions for such individual can
be identified by the rules. According to the state of each SC region in every condition, the
corresponding MIF knowledge can be matched, which is integrated and combined to the adjustment
knowledge vector of such individual.

3.2.2. Guiding optimization. In order to utilize adjustment knowledge to guide the optimal searching,
the effect operators are designed according the optimization algorithm. In this paper, the genetic
algorithm is utilized, so that some effect operators, such as elitist preservation influence operators,
selection influence operators, crossover influence operator and mutation influence operators [6], are
designed. After acquiring adjustment knowledge, the effect operators are updated. And then, the
genetic operators are also updated to realize knowledge-based population evolution.

4. Application
The structural optimization of gooseneck type boom for medium-sized excavator is taken as an
example, in which the lightweight goal of minimizing the volume of boom under four working
conditions [7] is proposed. By using the mechanism shown in figure 1, the SC regions are identified
and shown in figure 4. And then, the stress characteristic knowledge is acquired and saved in
knowledge base.

Figure 4. The SC regions of gooseneck type boom.

In order to verify the feasibility and effectiveness of proposed method, four testing cases with
different control strategies for SC regions are shown in table 2.

Table 2. Control strategies for SC regions in testing cases.

Case Number Main control region Conditional control region Auxiliary control region
Case 1 Maximum stress in boom — —
Case 2 Maximum stress in boom — —
Case 3 K1, K2, K7, K9-10 K3-4-8 —
Case 4 K1, K2, K5, K6, K9, K10 K3-4-8 K7

Case 1 is the traditional experience design case and only the maximum stress in the boom is
controlled. Case 2 uses the existing genetic algorithm and also only controls the maximum stress. Case
3 includes four main control regions, i.e., K1, K2, K7 and the region combining K9 with K10. The
conditional control region in this case is the combined control of K3, K4 and K8, but the auxiliary
control region is not considered. Case 4 includes six main control regions, i.e., K1, K2, K5, K6, K9 and
K10. The conditional control region in Case 4 is the same to Case 3, but the auxiliary control region is
K7. In Case 3 and Case 4, knowledge is utilized to guide the genetic operators, which are illustrated in
our preliminary work [6]. The results of testing cases are shown in table 3.
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In table 3, it is shown that the volume of boom in Case 3 is decreased by 40.97% and 4.76%
comparing with Case 1 and Case 2 respectively. Comparing with Case 3, the volume is further reduced
in Case4, but the maximum stress is not increased. DM represents the maximum difference value of
stress among four digging conditions. Comparing all of testing cases, the value of DM in Case 3 and
Case 4 are much less than that in Case 1 and Case 2.

Table 3. The results of testing cases.

Case Volume (m3)
Maximum Stress under Four Digging Conditions (MPa)

DM (MPa)
Condition 1 Condition 2 Condition 3 Condition 4

Case 1 0.1662 166.25 180.05 243.27 145.59 97.68
Case 2 0.1030 186.44 165.37 236.17 180.92 70.80
Case 3 0.0981 192.25 188.14 234.98 189.23 46.84
Case 4 0.0967 201.68 176.57 233.57 187.59 57.00

In addition, the evolution processes of Case 2, Case 3 and Case 4 are shown in figure 5. The
evolutionary rate of Case 4 is the fastest and Case 3 is secondly, which indicates that the searching
capacity can be improved greatly under the guidance of stress characteristic knowledge.

Figure 5. The evolution processes of Case 2, Case 3 and Case 4.

The comparing of characteristic stresses for Case 3 and Case 4 is shown in table 4, where Mmax

represents the value of characteristic stresses in every control region; Err represents the difference
between characteristic stress and allowable stress.

Table 4. The comparing of characteristic stresses for Case 3 and Case 4. MPa.

Name Item K1 K2 K5 K6 K7 K9 K10 K3-4-8

Case 3
Mmax 214.58 205.85 144.41 158.72 167.53 234.98 181.23 164.91
Err 30.42 39.15 100.59 86.28 77.47 10.02 63.77 80.09

Case 4
Mmax 233.57 223.62 164.94 186.81 145.43 222.56 186.50 162.61
Err 11.43 21.38 88.06 58.19 99.57 22.44 58.50 82.40

In table 4, although the genetic operators in Case 3 and Case 4 are the same, the knowledge guiding
to the optimization are different. In Case 3, the values of Err in K5 and K6 are larger than other regions.
Similarly in Case 4, the maximum value of Err is in the auxiliary control region K7. It is indicated that
the priority of control regions may influence the stress distribution. The result also shows that the
average value of Err is 60.97MPa in Case 3, but this value is decreased by 55.25MPa in Case 4, which
means the situation of equal strength in Case 4 is better than in Case 3.

5. Conclusion
By verifying the proposed strategy of automatic acquiring and utilizing stress characteristic knowledge,
the conclusions are shown as follows:

The proposed knowledge-based intelligent optimization mechanism can acquire knowledge from
RC regions automatically.
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The priority of control RC regions as well as the strategy of utilizing knowledge may influence the
efficiency and effectiveness of optimization greatly.

Utilizing stress characteristic knowledge to guide optimization, the effectiveness of coordinating
the conflict between structure performance and lightweight goal can be improved remarkably.
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