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Abstract. Nowadays, the laser technology is used in a wide spectrum of applications, 
especially in engineering, electronics, medicine, automotive, aeronautic or military industries. 
In the field of mechanical engineering, the laser technology reaches the biggest increase in the 
automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. 
Modelling and numerical simulation of laser welding processes has been exploited with many 
advantages for the investigation of physical principles and complex phenomena connected with 
this joining technology. The paper is focused on the application of numerical simulation to the 
design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes 
from theAISI 304 steel for automotive industry. Using the developed and experimentally 
verified simulation model for laser welding of tubes, the influence of welding parameters 

including the laser velocity from 30 mm.s−1 to 60 mm.s−1 and the laser power from 500 W to 
1200 W on the temperature fields and dimensions of fusion zone was investigated using the 
program code ANSYS. Based on obtained results, the welding schedule for the laser beam 
welding of thin-walled tubes from the AISI 304 steel was suggested. 

1. Introduction  
The laser beam welding represents a very powerful, productive and efficient technology of joining of 
various materials, which is used in many industries, from the automotive, aviation, space industries 
through electronics, medicine to energetic or military industries [1-10]. Modelling and numerical 
simulation of laser welding processes has been exploited with many advantages for the investigation 
of physical principles and complex phenomena connected with this joining technology [11-16]. It is 
generally considered as an effective tool for definition of appropriate welding parameters and 
optimization of laser welding processes [3, 17-18].  

Initial experiments in the field of welding of thin-walled tubes from the AISI 304 stainless steel by 
solid-state lasers have been carried out in 1974 mainly for the needs of the energy industry in the 
Europe and America. Up to the present, a large number of reactors and heat exchangers for European 
nuclear power plants are made from the AISI 304 steel. This steel is also widely used in the 
automotive industry around the world [5, 19-20].  

The main objective of this paper is to design proper welding parameters for the production of weld 
joints of thin-walled exhaust system tubes from the AISI 304 steel using the solid-state disk laser. To 
predict the temperature fields in welded pipes, numerical simulation of the laser beam welding in the 
program code ANSYS is exploited.  
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2. Problem description 
The tubes with the inner diameter of 27.1 mm, the thickness of 0.8 mm and the length of 200 mm from 
the AISI 304 stainless steel with the chemical composition given in the Table 1 should be welded 
using the solid-state disk laser TRUMPF TruDisk 4002 with the wavelength of 1063 nm, the fiber 
diameter of 200 µm and the maximum power of 2 kW [21]. Argon gas with the maximum flow rate of 

30 l.min−1 can be used as a shielding gas to protect both, weld bead and weld root. To design the 

appropriate laser power for required welding speed from 30 mm.s−1 to 60 mm.s−1, numerical 
simulation of the laser welding was performed using the program code ANSYS [22]. 
 

Table 1. Chemical composition of the AISI 304 steel. 

Element C Cr Ni Mn Si P S Fe 

wt. [%] max. 0.08 18 - 20 8 - 10.5 max. 2.0 max. 1.0 0.045 0.03  bal. 

 

3. Simulation model  
In general, numerical modelling is understood as a set of research activities associated with the 
development of appropriate geometrical model for an investigated object, setting its material 
properties, definition of relations between the modelled object and surroundings and also verification 
and validation of created simulation model for the analysed process or system. Hence, the simulation 
model consists of several parts including geometrical, finite element and material model. An important 
part constitutes the assignment of loads and boundary conditions. In case or transient processes, the 
definition of initial conditions is also required. 

Numerical simulation of laser beam welding processes requires to solve a coupled thermal, fluid 
and stress-strain problem involving phase transformations [11, 23-25]. Transient temperature fields 
developed during the fusion welding can be described by the heat diffusion partial differential 
equation in the form [26] 
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where T is the temperature [°C], t is the time [s], ρ is the density [kg.m−3], cp is the specific heat  

[J.kg−1.K−1], λ is the thermal conductivity [W.m−1.K−1] in the x, y, z directions of Cartesian coordinate 

system and qv represents the heat generated in the unit volume of material per unit time [W.m−3], i. e. 
the volumetric density of internal heat sources due to the welding heat input. To solve the Fourier-
Kirchhoff partial differential equation (1), it is necessary to specify geometrical shapes and dimensions 
of welded components, thermo-physical properties of welded materials, initial temperature distribution 
at the beginning of a welding process, intensity of internal heat sources and the thermal effects at the 
interface of welded structures and environment. 

According to the symmetry of investigated welding process and the main aim of numerical 
simulation (setting of welding parameters), only a one half of a welded tube with the length of 20 mm 
was taken into account. The designed geometrical model is illustrated in Figure 1a.  

To perform the transient thermal analysis, 3D finite element mesh (Figures 1b and 1c) was 
generated according to supposed temperature gradients using the eight-node 3D element type of 
SOLID 70 [22]. That means that progressive meshing with the higher elements density in the region of 
the weld pool and in the heat affected zone (HAZ) was used. The length of elements along the welding 
line was 0.2 mm. Through the tube thickness, twelve elements were generated for the accurate 
modelling of the volumetric heat source (Figure 1d) and thus, attaining reasonable temperature 
distribution in the region of a weld joint. The overall number of elements and nodes was 66 647 and 
65 022, respectively.  
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a)                                                                               b)  

c)                                                                               d)  
 

Figure 1. Geometrical model (a) and FE model (b) with a detail of generated mesh (c) and applied 
volumetric heat source (d). 

The thermal properties of the AISI 304 steel in the dependence on temperature (Figure 2) were 
computed using the JMatPro software [27]. The equilibrium solidus and liquidus temperatures for this 
steel were computed to be 1360 °C and 1440 °C, respectively. The enthalpy of fusion was modelled 
applying the method of modified specific heat [28-29]. 

 
Figure 2. Thermal properties of the AISI 304 steel in the dependence on temperature. 
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Considering the small thickness of welded tubes and the low thermal conductivity of AISI 304 
steel, a simple volumetric heat source model was applied for simulation of laser beam welding. The 

volumetric density of internal heat sources qv [W.m−3] was computed by the relationship 

 
V

P
q

v

η
=  (2) 

where P is the laser power [W], V represents the volume of a heat source [m3] and η is the efficiency. 
Depending on the applied laser (mainly the laser wavelength and power), welded material, its phase 
state, surface quality, temperature and other parameters, the laser energy irradiating the surface of 
welded material can be partially absorbed, reflected and transmitted. The process efficiency is mainly 
affected by absorption of laser energy. Based on the literature data, the absorption coefficient for the 
AISI 304 stainless steel was established to be 37.4 % [30]. 

The initial temperature of welded tubes was supposed to be 20 °C. The cooling of welded 
components by convection and radiation to the ambient air and the argon shielding gas was neglected 
in this case as the heat extraction from the weld bead to the surrounding tube base material by 
conduction is significantly more important.  

 
4. Verification of simulation model by experimental laser welding 
Experimental laser beam welding of thin-walled tubes from AISI 304 stainless steel with the inner 
diameter of 25.5 mm, the thickness of 0.8 mm and the length of 200 mm was carried out using a solid 
state DY044 Nd:YAG diode laser from ROFIN-SINAR Laser GmbH company as the disk laser 
TRUMPF TruDisk 4002 was not available for experimental measurements. The basic technical 
parameters of the DY044 Nd:YAG diode laser are summarized in Table 2.  

 
Table 2. Technical parameters of a solid state DY044 Nd:YAG diode laser. 

Parameter Value Units 

Maximum power 4.4 kW 
Wave length 1053 µm 
Beam quality 12 mm.mrad 
Laser beam diameter 400 µm 

 
The welded tubes were clamped into a rotary chuck. The welding speed was limited by the 

maximal speed of applied dog rotary chulk which was 17 mm.s−1. To investigate the influence of 

welding speed on the quality of produced weld joints, the welding speeds of 10 mm.s−1, 14 mm.s−1 and 

17 mm.s−1 were used. The laser power was varied from 400 W to 1000 W. During experimental laser 
beam welding, the temperatures were measured by two thermocouples of the K type. The 
thermocouples were welded by hand on the both sides of weld joints. In this reason, the location of 
thermocouples was not the same for all samples. The distance of thermocouples from the weld 
centerline were a (thermocouple TC1) and b (thermocouple TC2) according to Figure 3a. The welding 
parameters exploited for the preparation of experimental weld joints are given in Table 3. 

Experimentally measured temperatures in the dependence on time for the laser power of 600 W, 
800 W and 1000 W are plotted in Figures 3b-d. As it follows from these figures, the maximum 
measured temperatures are influenced not only by the laser power and welding speed but also very 
significantly by the distance of thermocouples from the welding centerline. The maximum 
temperatures on the level of 602 °C and 735 °C were recorded for the laser power of 600 W and the 

welding speed of 10 mm.s−1 and the laser power of 1000 W and the welding speed of 14 mm.s−1, 
respectively, with the thermocouples located the closest to the centre of the weld joint. Due to the 
more distant location of thermocouples during the laser welding with higher welding speeds and the 
same laser power of 800 W, the temperatures measured during the welding with the welding speed of 
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10 mm.s−1 are lower than that measured by the welding with the welding speed of 17 mm.s−1 and also 

14 mm.s−1 (Figure 3c). 

Table 3. Welding parameters and position of thermocouples in performed experiments. 

Sample w [mm.s−−−−1] P [W] 

Distance of thermocouples TC1 and TC2 

from the welding line  

a [mm] b [mm] 

1 10 400 6.85 6.36 
2 10 600 1.30 2.11 
3 10 800 6.83 6.27 
4 14 600 2.53 3.75 
5 14 800 3.48 4.33 
6 14 1000 1.46 1.36 
7 17 600 3.72 3.56 
8 17 800 2.31 2.61 
9 17 1000 6.17 6.48 
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Figure 3. Schematic illustration of the thermocouple positioning (a) and the time dependence of 
measured temperatures with the laser power of a) 600 W, b) 800 W and c) 1000 W using different 
welding speeds. 
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In Figure 4, the measured and computed time histories of temperatures during the laser welding 
with chosen parameters are compared together with the appearance of produced weld joints. The 
computed temperatures correspond to the results obtained in the node located at the distance „a” 

indicating in the graphs, i. e. in the node nearest to the position of the thermocouple TC1 or TC2. For 

the laser power of 600 W and the velocities of 10 mm.s−1 and 17 mm.s−1 (Figure 4a, c), the distance of 
corresponding nodes from the weld centerline is smaller than the distance of thermocouple what 
results in higher maximal computed temperatures in comparison with the measurements. On the other 

hand, in the case illustrated in Figure 4b (P = 1000 W and w = 17 mm.s−1), the thermocouple TC1 is 
located closer to the centre of the weld joint than the corresponding node, so the maximum 
temperature measured by the thermocouple TC1 is higher.  

In all investigated cases, the computed temperature decrease during the weld cooling is not as rapid 
as during the measurements. In simulation model, the weld cooling to the shielding gas and to the 
environment was neglected and in this reason the computed temperatures during the cooling phase are 
slightly higher. However, based on the comparison of measured and calculated temperatures it can be 
concluded that the simulation model was prepared correctly and it can be used for the following 
computation in order to set proper welding parameters for the laser welding of thin-walled tubes from 
the AISI 304 stainless steel. 
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Figure 4. Comparison of measured and computed time histories of temperatures during the laser 
welding with chosen parameters and the appearance of produced weld joints. 
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5. Results and discussion 
The developed and verified simulation model was applied for the design of welding parameters for the 
laser welding of the thin-walled tubes from the AISI 304 steel. A set of numerical simulations in the 
program code ANSYS was carried out with the welding speed varied from the required interval from 

30 mm.s−1 to 60 mm.s−1 and the supposed values of laser power from 500 W to 1200 W.  
For illustration, the temperature fields computed applying chosen welding parameters are depicted 

in Figure 5. The increase in the laser power at the constant welding speed results in the enlargement of 
a fusion zone and as well as in the enhancement of the maximum temperature of the weld metal 
(Figure 5a-c). On the other hand, with the increase in welding speed, the size of a fusion zone 
decreases (Figure 5d-f). The highest temperatures in fusion zone were reached when the combination 
of high laser power and low welding speed was applied.  

In Figure 6, the temperatures of a weld pool and a weld root are shown for considered welding 
speeds and chosen values of laser power. Based on presented time-temperature dependences, the 
maximum temperatures attained at the top of the weld pool can be estimated and the possibility of the 
weld root re-melting can be assessed.  

For the welding speed of 30 mm.s−1 and the laser power of 500 W, the maximum temperature of 
the weld root is deeply below the liquidus and also the solidus temperature of the AISI 304 steel. This 
laser power is insufficient for the production of a sound weld joint. By the laser power of 700 W, the 
weld root can be re-melted as the maximum weld root temperature reaches the liquidus temperature 
TL. In case of welding with the higher laser power (800 W and more), the weld root temperatures are 
too high.  

 

a)      d) 
 
 
 
 
 

 
b)      e) 
 
 
 
 
 
 
c)      f) 
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Figure 5. Temperature distribution in a welded tube during the laser welding with the chosen welding 

parameters: welding speed of 17 mm.s−1 and the laser power of a) 500 W, b) 600 W, c) 1000 W and  

d) the welding speed of 30 mm.s−1 and the laser power of 800 W, e) the welding speed of 50 mm.s−1 

and the laser power of 800 W, f) the welding speed of 60 mm.s−1 and the laser power of 900 W. 
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Figure 6. Time dependence of the temperatures at the top of weld pool and on the weld root computed 

for the welding speed of a) 30 mm.s−1, b) 50 mm.s−1 and c) 60 mm.s−1 and the chosen values of laser 
power. 
 

Similarly, the laser power of 800 W and 900 W is not sufficient for the production of high-quality 

weld joint of tubes from AISI 304 steel if the welding speed is 50 mm.s−1 or more. The temperatures 

of a weld pool using the laser power of 1200 W together with the welding speed of 50 mm.s−1 are very 
high. They can lead to the unwanted boiling of the weld metal.  

Based on performed numerical simulations, the welding schedule for laser beam welding of thin-

walled tubes from the AISI 304 steel was proposed for the required welding speeds from 30 mm.s−1 to 

60 mm.s−1 (Figure 7). In this figure, the details of temperature distribution in the longitudinal weld 
cross-section for considered welding parameters are shown. In the grey-coloured regions, the 
temperatures are above the 2100 °C.  

Figure 7 clearly indicates in which cases the tube wall is re-melted through the whole thickness and 
which welding parameters can be appropriate for the production of high-quality weld joints. For the 

welding speed of 30 mm.s−1, the minimal laser power must be 700 W. The application of laser powers 
above 800 W can cause boiling and evaporation of the weld metal. For the welding speed of 

50 mm.s−1, the laser power from the interval from 900 W to 1000 W can be recommended. For the 

highest considered welding speed of 60 mm.s−1, the minimal laser power of 1000 W is required. 
However, the laser power more than 1100 W can lead to the weld pool temperature increase above the 
boiling temperature of the AISI 304 steel. 
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Figure 7. Welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel. 

 

6. Conclusions 
Based on the developed and verified simulation model, the temperature fields during the process of 
laser beam welding of thin-walled tubes from the AISI 304 steel were investigated and analysed. 
According to obtained results, the following values of laser power can be recommended for the 
production of sound weld joints of thin-walled tubes from AISI 304 stainless steel using the solid-state 
disc laser TRUMPF TruDisk 4002 and required welding speeds:  

• the laser power from 700 W to 800 W for the welding speed of 30 mm.s−1, 

• the laser power from 900 W to 1100 W for the welding speed of 50 mm.s−1 and 

• the laser power from 1000 W to 1200 W for the welding speed of 60 mm.s−1. 
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