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Abstract. Novel technique for identifying and quantification of local deformation phenomena 

in continuum model of grained solid structure is presented in this paper. We propose a method 

that combines deformation properties of structure with the changes of grains geometry 

deformed under the influence of local force. Experimental analyses of grains shapes subjected 

to a local force show a specific spatially oriented prolongation of grains in direction 

determined by applied force. However the volume of each grain is retained during the force 

application in case of plastic deformation. Character of individual grain prolongation depends 

on the initial shape of grain and direction of loading force. There is a definite relationship 

between the change in grain shape and nature of the driving deformation force. We contribute 

to the revealing of mentioned relationship because of we propose and analyze a method for 

quantification of the effect of grain shape modification on the basis of grain deformation. 

Quantitative analysis of local deformation in grained structure can be realized in a perspective 

using mentioned method. Map of local deformation data in grained system can be constructed 

in this way and next the local deformation dynamics analysis can be performed. However 

precision of mentioned analysis must be proven by evaluating of its practical predictive 

performance in future. 

1.  Introduction 

Various technological procedures in the materials preparation are influenced by macroscopic effects of 

deformation. However these observable macroscopic effects do not reflect local microstructural 

changes in deformed areas of material in all their diversity. To obtain exact information about local 

changes in microstructure various more sophisticated methods must be used, for instance methods 

based on acoustic emission, microhardness measure, dislocations analysis, slip band observation, 

micromeshes method or macroscopic screw method. But no of these available methods give analytical 

expressions relating structure parameters and local strain in each position of bulk material volume.  

The polycrystalline material is formed from grains having a various shapes. During an applied 

mechanical loading, according to the different directions and the influences from neighbouring grains, 

most of grains are submitted to a deformation. The deformation of grain results in a change in 

orientation and amount of grain surface area which lead to local heterogeneous plasticity. Therefore 
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grain surface area and grain edge per unit volume are parameters important in various theories of 

plasticity as they are generally considered to heterogeneous nucleation sites.  

Our work is oriented just on the mathematical treatment of grained structure deformation. 

Contribution deals with the problem of a grained structure distortion induced by local deformation. 

We suggest a variable suitable for evaluation of degree of grain surface area orientation with respect to 

certain vector in three-dimensional space and discuss the relation of this variable to local deformation 

parameters. Our contribution finishes with a brief commentary on suggested technique of quantitative 

analysis. 

We emphasize that strictly geometric orientation of the grain in three-dimensional space is 

discussed in our work. We do not discuss orientation of the crystal structure within the grain (even 

though concept of grain orientation is usually related with crystallographic orientation). A new 

magnitude  is defined to evaluate the degree of orientation of the grain surface with respect to a given 

direction.  The presented work aims to find a correlation between the change in the degree of 

geometrical orientation of a grain and the deformation experienced by it. We study the case of a grain 

subjected to deformation, and apply the obtained results to the particular case of a randomly oriented 

grained structure. It is necessary to note that presented paper contains only a mathematical model for 

the describing the deformation of a fictional, simplified grained structure - no real material is 

specified, nor is the actual deformation process described. Purely theoretical approach is presented. 

However it have been shown that such a deformation mechanism, i.e. elongation (or the shortening) of 

grains under applied load, exists in a real-world material. 

2.  Quantitative analysis of grains orientation 

Grain-surfaces (grain boundaries) play important role in energy balance of grained structure. Loading 

force causes a specific type of perturbation of this balance in initial grained structure. Therefore it may 

be supposed that in case of grain deformation certain direction is preferred from the orientation of 

grain-surface elements point of view. Question is how could be quantified relationship between this 

preferred orientation of grain-surface area elements and local structure deformation parameters.  
Planar character of infinitesimal surface area enables to clearly define orientation of surface 

element in 3D just by means of the vector dS . Hence it is possible to easily analyse a sort of "degree" 
of single surface element orientation in relation to any unit vector   for example by absolute value of 
scalar product: 

 
  pdS dS cos dS   

 (2.1) 

where  is angle between vectors   and dS . This absolute value determines the size of projection of 
the surface element dSp to the plane perpendicular to the vector  . Quantity (2.1) calculated per unit 
surface area of grain, i.e.: 

 

 dS cos

S



, (2.2) 

assesses a contribution of the element to a "degree" of whole grain-surface orientation in relation to 
vector  . We suggest, that for quantitative analysis of grain surface distortion it is required to define a 
variable  enabling evaluate "degree" of whole grain-surface orientation in relation to vector  .  

Contribution rate of mentioned element to the whole grain-surface orientation can be intuitively 
proposed by generalization of formula (2.2) as: 

         
 

dS
d

S
  

, 

where S is total surface of whole grain and () is a function of the angle . It is advisable to choose 

the function (a) in such a way that the value will be related to an experimentally measurable 

quantities. We have chosen function () in such a way that limit values of variable are consistent 
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with values obtained in procedures realized at analysis of particles orientation using Saltykov method 

[1, 2]. Experimental estimation of grains orientation degree using this method is relatively simple. In 

consistent with this technique we require: 

 
2

1lim
 




  ,     
0

1lim





  .  (2.3) 

So next function can be intuitively used in this case: 

 
   1 2 cos   

 (2.4) 

and contribution dcan be written in the form: 

 
  1 2 2

dSdS dS
d cos

S S S


 


   

. (2.5) 

Degree of whole grain-surface orientation in relation to vector  can be determined by the integrating 

of (2.5) over the entire grains surface: 

  

1
1 2

Surface

dS
S

   
. (2.6) 

We believe that variable defined byenables to analyze grain-surface area distortion induced by 

deformation. 

3.  Relationship between deformation tensor and orientation parameter  

Consider isotropic, linear elastic material with the grained structure. Generally the parametrization of 

any grain boundary surface in 3D can be accomplished by spatial coordinates of each points on the 

surface: 

  i iX X u,v , where i = 1, 2, 3. (3.1) 

and u, v are parameters that changes in defined intervals. Therefore the position vectors of each points 

on the surface of single grain boundary with any possible shape in undeformed configurations can be 

written as: 

 
       1 2 3 1 2 1 2R u,v X u,v ,X u,v ,X u,v , u u ,u , v v ,v .      (3.2) 

Let the position vectors of each points on the surface of the same grain in deformed configurations are: 

 
       1 2 3 1 2 1 2r u,v x u,v ,x u,v ,x u,v , u u ,u , v v ,v .         (3.3) 

In general case, any 3D deformation can be described by a 3x3 deformation tensor 


. Using notation 

mentioned above the grain linear deformation (for small strain) can be expressed as anisomorphic 

linear transformation: 

 r R  ,    or     i ij jx X , (3.4) 

where i, j = 1, 2, 3 and ij  are coefficients of deformation tensor. It is no problem to verify that ij = ij 

in undeformed case (where ij is Kronecker symbol). We used typical Einstein`s summation 

convention in the second formula in (3.4) whereby when an index variable appears twice in a single 

term it implies summation of that term over all the values of the index.  
Considering transformation (3.4) when calculating the orientation parameter (2.6) we get: 
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 
 

 

1 2

T
undefor

Surface

defor

undefor

Surface

dS

dS

 


 

 

 






 (3.5) 

where is a tensor coefficients of which are related to coefficients of deformation tensor 


: 

 
   1

w m

wm mwdet 


 
. (3.6) 

 
mw

det 
  is the minor (or subdeterminant) of matrix of the deformation tensor 


. So it is easily to show 

that coefficients of tensor of grain surface deformation can be found as: 

 wm ik jn in jk     
, (3.7) 

We note that T in formula (3.5) is tensor that is transposed to the tensor   determined by (3.6). It 
can be seen from (3.5) that in general the transformation of parameter  during grain deformation 
appears to be relatively complicated and we will not examine its mathematical properties in detail. 
However, it should be noted that we integrate over the surface of undeformed grain in the formula 
(3.5). So to determine the value  in deformed configuration we need to know only the shape of 
undeformed grain and coefficients of deformation tensor ij. Therefore we believe, that  could be an 
acceptable scalar variable suitable for the quantitative evaluation of grain-surface distortion during 
local deformation of grained structure. 

4.  Monte Carlo simulation of the parameter -  the case of "random" grained structure 

Integrals in formula (3.5) must be integrated over the entire surface of grains boundaries if the whole 

grained structure orientation  is evaluated. For the calculation purposes this integral can be 

transformed to summation over the small areas placed around whole grains boundaries surface 

(infinitely small in the ideal case). So we get: 

                 

   

   

1

1

1 2

N
iT

i
defor N

ii

i

S

S

 



 





 

 






.                                   (4.1) 

where 1 2 3, ,        is any unit vector (i.e. 2 2 2
1 2 3 1     ) and  i is unit vector perpendicular to the 

i-th grain-surface element of undeformed grain:   

 
     i i i

S S
. (4.2) 

Vector  i  can be written in the form: 

                    
0 2 0

i i i i i i i i
sin cos , sin sin , cos , , , ,            
    

while angles  i  and  i determines orientation of the i-th grain-surface element and then:  

 

                            1 2 3

i i i i i i ii i i i i
S S , S , S S sin cos , S sin sin , S cos       

       . (4.3) 
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If we use result (3.7) and notations (4.3) sums in the formula (4.1) can be easy calculated. As can be 

shown the problem of grained structure orientation can be formulated mathematically as random 

matrix problems. In this sense, the formula (4.1) can be rewritten to the form: 

 

   

    

3

1 1

3 2

1 1

1 2 1 2 3

N
i i

n n

i n

defor
N

i i

n

i n

S det A

n , ,

S det A




 

 

 
 
 
 

  
 
 
 
 

 

 
 (4.4) 

where det  i
nA  is determinant of random matrix  i

nA with coefficients: 

 

                   
    

1
1 1 1 1 1

2

1 1

k

k

ki i i i i
mk m,n m,nnmk

i

A sin cos sin sin

cos





      



           
      

   
    (4.5) 

and:  

 

1

1 1

2

k

k ,









 


 
 

1

1 1
1 2 3

2

k

k , n,m,k , , .









 
 

 
Formula (4.4) can be imposed and smartly used in the formal mathematical notation as well as 

numerical implementation of considered approximation approach.  

We suppose calculate degree of whole grained structure orientation   in relation to any unit vector   

by means of the formula (4.4) while sums in the numerator and denominator in the second member on 

the right side of this formula can be determined step by step. Any randomly oriented surface element 

of grain boundary S(i) in the given bulk sample with grained structure can be included into the 

calculation of  if corresponding parameters (i) and (i) will be applied. Therefore random values of 

angles (i) and (i) should be substituted step by step into formula (4.5) when the calculation progress. 

5.  Investigation of the simulation procedure 

In this section we present investigation of computational stability of procedure described above. 

Consider random grained structure with uniform distribution of parameters (i) and (i). Values of these 

parameters were generated by random number generator character of which was tested (see Figure 3). 

As can be seen from the Figure 3 no direction is preferred from the flat element S(i) orientation point of 

view. Let the scalar variable for this grained structure in undeformed state. Consider for 

example the deformation of mentioned structure described by next deformation tensor: 

 

                                                             

 

 

 

 

 

 

 

  

  

Figure 1. Scheme illustrating a view on a 

grained structure cross-section (for example on 

metallographic cut). Cross-section of some 

individual grain is colored. 

                                                            

 

 

 

 

 

 

 

 

 

  

  

                                                             

 

 

 i
S  

Figure 2. Scheme illustrating a view on the model 

of the same grained structure cross-section. 

Scheme demonstrates the replacement of grain 

surface by small flat areas. 
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 
    (5.1) 

 
 

 
 

Degrees of whole grained structure orientation defor in relation to a few arbitrary chosen vectors   
were calculated by Monte Carlo simulation using the formula (4.4).  
Results of the simulation are shown in the Figure 4. As can be seen from presented graphs if the 
number of considered flat elements N is increasing the variance of calculating values defor decreases. 
Computational test was carried out up to N = 108.  
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6.  Conclusion 

In this paper values of parameteters established in stereology are used to extend the results of 

stereological measurements to provide a predicts the local deformation of grained structure.  

Orientation of grains in a microstructure reflects this deformation in terms of quantities that can be 

directly measured in microstructures by means of stereological methods. This is illustrated with a set 

of simulations that successfully tests our predictions.  

Generally one can easily understand that there is a correlation between the change in the grain 

orientation and grain deformation [3, 4]. This correlation was mathematically demonstrated in our 

work. Indeed, the expression (3.5) allows one to investigate this correlation. Finally, if we interpret the 

quantity as the degree of grain orientation corresponding with the value measured at Saltykov 

method, the analysis of local deformation could be easily realized experimentally on the basis of our 

results. As an illustration we have shown the applicability of our results for random model of grained 

structure. This specific case of model have used here because of its simplicity but we believe that our 

method can be applied also for other models. 
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Figure 4. Result obtained by Monte Carlo simulation of parameter  for the deformed grained 

structure described by deformation tensor (5.1). Graphs show calculated value of parameters defor as a 

function of considered number of randomly oriented grains boundaries elements N in the stochastic 

model of grained structure illustrated in the Figure 2. Presented results clearly demonstrate the 

convergence of calculated values defor when the simulation is running. This fact suggests the 

applicability of proposed procedure for investigation of local deformation in real grained structures.  
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