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Abstract. This provides precious experience and reliable reference data for future design. This 
paper introduces the analysis process of Fan-blade-out, and considers the effect of windmill 
load on the fatigue lifespan of the case. According to Extended Operations (ETOPS) in the 
airworthiness regulations, the fatigue crack of it is analyzed by the unbalanced rotor load, 
during FBO. Compared with the lifespan in normal work of the engine, this research provides 
valuable design experience and reliable reference data for the case design in the near future. 

1. Introduction 
With the rapid development of modern aviation industry, the safety and reliability of aircraft in 
particular has caught people's attention. Many painful lessons tell people the aviation history of the 
world. Once it fails, generally, it influences the performance of the aircraft, but, worst, the machine 
crashed. As the "heart" of modern aircraft, the aero-engine is prone to all kinds of failures due to its 
extremely complex structure and its work in harsh environments such as high speed, high temperature 
and heavy loading [1-2]. 
In the 1940s, the advent of gas turbine engines had played an important role in the aircraft 
development from subsonic to supersonic, but 20 years ago, there was a tendency of the design of the 
engine focused on its performance, reliability and durability, not considering the structure weight, and 
therefore engine parts were designed to be quite heavy. Especially at the beginning of the 1960s, in 
order to meet the needs of aircraft speed, high thrust weight ratio, high compression ratio and high 
temperature requirements of turbine engines, the load of it was greatly improved, and engine vibration 
was more prominent, resulting in lots of strength, vibration, and fatigue incidents of engine 
components, such as pylon and cabin. This caused emphasis on the reliability research. Since the 
1980s, the structural integrity of aero-engine had been studied in China, and the whole airplane 
vibration caused by aero-engine was being one of the most critical research projects [3-6]. As for early 
aero-engine, since the rotor speed was low, the casing stiffness relative to the rotor was relatively high. 
The coupling vibration of them could be ignored. If only the critical speed of rotor was calculated, this 
made the casing structure design conservative and heavier; significant characteristics of modern aero 
engine are high speed, high performance, especially for small and medium sized aircraft engine rotors, 
which are flexible. The rotor speed may be above the critical speed of the first order (or several orders), 
the casing wall is thinning, and most of the structures are revolving shells. Dynamic effects between 
the rotor and the case are very close, mutual coupling and interaction is increasingly strengthening, 
forming the structure of complex dynamic behaviours, and therefore the whole machine vibration 
problem is very prominent, so it is necessary to analyze the dynamic characteristics of the engine from 
the overall angle. In extreme cases, the unbalanced load, due to fan blade out, leads to the fatigue 
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crack of the case. The case vibration accidents quite often occur in military and civil engines to some 
different degree, resulting in a large number of engines being sent back to the factory for repairs, 
reducing the service life, and greatly increasing the cost of maintenance. Therefore, it is vital to study 
the vibration of aero-engine rotor system and whole engine system for the safe and reliable operation 
of the aero-engine [7]. 
In the airworthiness, it is put forward that the British defence standard "air gas disaster engine general 
specification", which detailed rules for blade requirements (blade containment) in the first 12.8.7 and 
19.3.5 section. The case must have sufficient strength, working at the highest speed and containing 
any broken or loose blade. The machine box without large rupture and serious distortion, and the size, 
quality, speed and trajectory of the escape debris from the engine do not harm the rest of the aircraft. 
The airworthiness requirements of this point can be learned that the case should be in a safe working 
range, without major cracks and deformation. 
According to CCAR-121 R4 "public air transport carrier of large aircraft of operation qualification 
examination and approval rules”, the definition of (ETOPS), the process is that, on the basis of single 
expires, the plane ferry flights can be defined as 120 minutes, that is to say, the aircraft case in this 
phase has no larger crack and deformation. 

2. Introduction of engine case 
With the development of high speed and high thrust ratio of aero-engine, most of the cases are 
designed to be thin wall cylindrical structures with weak rigidity. The function of it is to properly 
support the rotor system according to the designed transmission line, and form a specific airflow 
passage. For aircraft engines, the gearbox and the rotor system are connected by a number of main 
bearings, and the case of the rigid rotor will influence the characteristics of the critical speed. In the 
aviation engine dynamic characteristics analysis, the dynamic performance of the case structure should 
be considered. At the design stage of the overall engine, the rotor critical speed must be estimated and 
analyzed so as to analyze the rationality of the overall structure; in engine engineering design stage, 
the rotor, bearing, case system must also be used to analyse structural dynamic characteristics, in order 
to determine the accurate range of the critical speed. If Fan Blade Out (FBO) happens, it must ensure 
that the rotor support system runs normally.  
As the composite material is widely used in aircraft, this provides a new choice for case design, from 
single metal material, gradually developing into a large proportion of composite engine, nowadays. 
According to the composition of the materials used, the case can be divided into the following types: 1) 
Aluminum/titanium alloy case; 2) The fiber winding intensifier case; 3) Full composite material case; 
4) Ceramic matrix composite material case; 5) Other material case. Although there are various kinds 
of composite materials, the basic objective is to reduce the weight of the case, improve the strength 
and stiffness of it, increase engine weight ratio, and strengthen protection effect, etc. In this paper, the 
thin-walled material of the case is aluminum alloy, and the fatigue performance of the engine system 
is mainly considered. 

3. Introduction of FBO process 

3.1. Introduction analysis principle 
FBO events are a multidisciplinary and integrated analysis of implicit explicit - implicit process, using 
MSC. Nastran for FBO effective simulation [8]. FBO is highly nonlinear, consisting of three separate 
steps. The first step is implicit nonlinear analysis of FBO under the prestressed thrust load (see 
equation (1)), by using the fine mesh finite element model (FEM), whose result is used as the second 
step, explicit nonlinear, which is the initial conditions of transient dynamics (see equation (2)). The 
third step, implicit nonlinear analysis, is engine speed dropping process and the transient state (see 
equation (3)), by use of the coarse mesh analysis of rotor dynamic characteristics and unbalanced load. 

KX F           (1) 
Mv Ft           (2) 

.. .
( )M X C X KX F t             (3) 
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Among them, in formula one, K is the structure stiffness matrix; F is the prestressed load. In formula 
two, M is the structure mass; V is the impact velocity; F is the impact load; T is the impact time. In 
formula three, M, C and K are structural mass, damping and stiffness matrix, respectively. X is the 
displacement vector; F (t) is a force varying over time. 

3.2.Model of FBO 
The thickness of the case is listed in Fig. 1. The transient impact model (see Fig. 2) of FBO includes 
an engine pod, an engine case, a rotor, blades of the engine, and the rotor axis of the engine providing 
rotor rotation with three bearings. After FBO, the model (see Fig. 3) of the unbalanced analysis 
contains nacelle, pylon, and case. 
    

 
 
 
 
 
 

Figure 1. Thickness 
distribution of engine case. 

 Figure 2. Model of FBO. Figure 3. Model of engine rotor 
dynamics  

3.3. Results of FBO 
In this paper, two kinds of calculation analysis are carried out, and one is the normal operation of the 
engine (CASE 1). The second is the FBO model (CASE 2). Figures 4 and 6 show the deformation of 
the entire engine when the engine turns normally and abnormally, respectively. Figures 5 and 7 are 
varying load over time in case 1 and case 2. 

  
 
 
 

 

Figure 4. Deformation contour of working engine 
systems (case 1). 

Figure 5. Load at hanged Point changing 
with time (case 1). 

  
 
 
 
 

 

Figure 6. Deformation contour of working engine 
systems (case 2). 

Figure 7. Load at hanged point changing 
with time (case 2). 

Through the above displacement cloud graph and the load variation, the table 1 is summarized for 

reference. 

Table 1 Comparison of CASE 1 and CASE2 

Analysis results Case 1  Case 2 

Load at Node 5  (Pound) 0-3900. 0-5400. 

Fluctuating numbers of  load     2 4  

The combined deformation of radial and  
circumferential direction of engine blades   (in) 

   12.5 39.9 

Pylon Node 5 

Simplified model 
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4. Lifespan estimation of engine case 
Although the FBO event on commercial jet engines is rare, it must be considered during the design 
phase of the engine. The engine structure must be able to withstand the large dynamic loads that occur 
during such extreme loading. As an airworthiness certification process, FAA requires engine 
manufacturers must successfully verify through practical tests, the engine can withstand an FBO 
events still located in the installation frame, and the case can continue to work safely. 
The case is a typically thin-walled circular shell structure. As the main bearing component of the aero-
engine, the shell has the advantages of light weight and large carrying capacity. When the case is 
impacted by FBO, cracks may appear, which will destroy the integrity of the case, and cause the 
change of dynamics characteristics. So the fatigue and crack of the case have received extensive 
attention by scholars. 
At present, as for the fatigue life estimation method commonly used in engineering, the S-N curve is 
widely applied from the stress fatigue. From the strain fatigue, the Manson-Coffin formula is mainly 
used. After FBO, the stress of the case exceeds the yield limit of the material under the unbalanced 
rotor vibration, in the (ETOPS) period, and therefore, the strain fatigue life estimation method is 
adopted. 
According to Dirlik equation of the vibration fatigue: 
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Among them, N (Si) is the number of stress cycles at time T; ni is the actual counting cycle; Si is the 
total number of cycles; E [P] is the number of peaks per second; 
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Vibration fatigue simulation can be completed by using the finite element analysis in time domain, and 
get dynamic stress or the strain results.  
Through fatigue analysis, the case lifetime during normal operation is shown in the following figure 8: 

 
 
 
 
 

 

Figure 8. Fatigue lifespan of the case wall under normal work. 
The fatigue lifespan and initial crack of the case after FBO are shown below in Figs. 9 and 10. 

  
 
 
 
 
 

 
 

Figure 9. Crack of the case wall after damage Figure 10. Fatigue lifespan of the case wall after damage 
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5. Discussion and conclusion 
The following conclusions can be obtained from the compared simulation analysis of the CASE 1 and 
CASE 2. 
(1) during FBO, the engine products a large amplitude of fluctuating for the nacelle, which is about 1.5 
times as much as that of normal work.  
(2) during FBO, the engine causes the numbers of load fluctuation, which is about twice as many as 
these in the normal working time. 
(3) the combined deformation of the radial and circumferential direction of the blade during normal 
working is 12.5 inches, while that after FBO is 39.9 inches. 
(4) when the engine is working normally, the case has no damage and unlimited lifespan; after FBO, 
the skin of the case is damaged and its life is greatly reduced, but it can still meet the airworthiness 
requirement.  
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