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Abstract. A graph G = ( V, E ) is uniquely colorable if the chromatic number   ( G ) = n and 

every n – coloring of G induces the same partition of V. In this paper, we introduce a new kind 

of graph called  - uniquely colorable graphs. We obtain a necessary and sufficient condition 

for a graph to be  - uniquely colorable graphs. We provide a constructive characterization of  

- uniquely colorable trees. 

1.  Introduction 

In [1] Benedict Michael Raj et al., studied a few properties of two invariants, dcc(G) and  dccs(G). In 

[2], John Arul Singh and Kala investigated graphs with md (G) = 0 and also proved certain if and 

only if conditions such that md (G) =  (G). In [3]  Benedict Michael Raj et al obtained some bounds 

for the chromatic transversal domatic number, dct ( G ) and characterized graphs attaining the bounds. 

Also, characterized uniquely colorable graphs with dct(G) = 1. Finally obtained Nordhaus–Gaddum 

inequalities for dct(G) and characterized graphs for which dct(G) + dct (  ̅) = p and p − 1. In [4]  

Michael Dorfling et al provided a simple constructive characterization for trees. In [5] David E. Brown 

et al characterized the class of 2-trees which are interval 3- graphs. 

2.  Terminology 

We consider only simple connected undirected graphs G =  ( V, E ) with n vertices and m edges. H is a 

subgraph of G, if vertex set of H is contained in vertex set of G and ( uv ) E ( H ) implies ( uv ) E (  

G ). A subgraph H is said to be an induced subgraph of G if for every pair u, v of vertices, ( uv ) E( 

H  ) implies ( uv ) E (  G ) and is denoted by  H . A path is a trail in which all vertices ( except 

perhaps the first and last ones ) are distinct, Pn denotes the path with n vertices. A cycle is a circuit in 

which no vertex except the first ( which is also the last ) appears more than once. Cn is a cycle with n 

vertices. Kn is a complete graph with n vertices. For properties related to graph theory, we refer to F. 

Harary [6]. Given a simple, connected graph G, partition all vertices of G into a smaller possible 

number of disjoint, independent sets. This is known as the chromatic partitioning of graphs.  
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Figure 1. 

A graph G = ( V, E ) is uniquely colorable if the chromatic number   ( G ) = n and every n – coloring 

of G induces the same partition of V.  

 
Figure 2. 

A set of vertices D in G is a dominating set if every vertex of V – D  is adjacent to some vertex of D. 

If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum 

dominating set – abbreviated MDS. The cardinality of any MDS for G is called the domination 

number of G and it is denoted by  ( G ).The private neighborhood of v  D is defined by pn [ v, D ] = 

N ( v ) – N ( D – { v} ). For properties related to domination, we refer to T. W. Haynes, S. T. 

Hedetniemi, and P. J. Slater [7]. 

3.  Results and Discussions 

 

Figure 3. 
 

In Fig. 3 G1, G2 and G3 are uniquely colorable graphs, with chromatic partition P1 = {{ 2 }, { 3, 4 }, { 

1, 5 }},  P2 =  { {1, 3 }, { 2, 4 } } and P3 = {{ 1, 3, 5 }, { 2, 4, 6 } } . We observe that in P1, { 2 } is a  

- set for G1, while in P2  every set in the partition is a  - set and in P3 the partition has no  - set. So we 

understand that, there are uniquely colorable graphs where at least one set in the partition is a  - set. 

We restrict onto uniquely colorable graphs whose chromatic partition contains atleast one  - set. We 

call such graphs as  - uniquely colorable graphs and the chromatic partition of such graphs as  - 

chromatic partition. 

Theorem 1 

Let G be a uniquely colorable graph. Let P be the chromatic partition for G. Let D be an independent  

- set for G. D  P if and only if there exist a partition P1 of V – D such that  
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1. P1 is unique 

2. every set in P1 is independent 

3. | P1 | = k – 1 where | P | = k. 

Proof 

Let G be a uniquely colorable graph. Let P be the chromatic partition for g. Let D be a  - set for G. 

Let | P | = k. Assume that D  P. Let P = { x1, x2,…., xk }. Let D  xi. Any vertex in xj V – D, j = 1 

to k, i ≠ j. Since P is the chromatic partition for G, P1 = { x1, x2, …, xi-1, xi+1,…, xk } is a partition for V 

– D such that  

1. P1 is unique 

2. every set in P1 is independent 

3. | P1 | = k – 1 where | P | = k. 

Conversely, assume that there exists a partition P1 for V – D satisfying the conditions of the theorem. 

Let P1 = { x1, x2,…., xk - 1 }. Let P = P1 { D }. 

1. ⋂   
 
     =  

2. P1 D =  

3. P1 D = V ( G ) 

4. xi, D, i = 1 to k – 1 are independent. 

Hence P is a chromatic partition for G.  

Remark 

G has a chromatic partition P not containing any  - set if and only if either 

1. G has no independent  - set  

2. If G has an independent  - set then conditions of Theorem 1 fails. 

Proof 

Let P be the chromatic partition not containing any  - set of G., In this case, it is obvious that 

1. G has no independent  - set or 

2. If G has an independent  - set then there exists no partition P1 of V – D satisfying the 

conditions of Theorem 1( else if a partition exists for V – D then the assumption that P does 

not contain any  - set fails  ). 

Conversely, if the conditions of the remark satisfied, then P has no  - set. 

Theorem 2  

If P is the chromatic partition for a uniquely colorable graph G, then every set in P is a dominating set. 

Proof 

Let P = { x1, x2, …, xk } be a chromatic partition for G. Assume that there exist some xi, i = 1 to k such 

that xi is not a dominating set then at least one vertex u  V ( G ) , u  xi, u not adjacent to any 

vertex in xi. Assume that u xj, j ≠ i, P1 = { x1, x2,…., xi-1, xi{ u }, xi+1, …, xj-1,xj { u } , xj+1,…, xk } 

is a chromatic partition for G, a contradiction for our assumption that G is uniquely colorable. 

Theorem 3 

Let G be a uniquely colorable graph | P | = 2 if only if N ( u )  V – D  u  D, N ( w )  D  w  V 

– D. 

Proof 

Let G be uniquely colorable and | p | = 2  = { x1, x2 } ( say ). If for some u D  a vertex v  V – D  

v  D then P = { x1, x2 } is a partition for G such that u, v belongs to some Xi, i = 1, 2 , a contradiction 

to our assumption on P. 

Similarly, if for some w V – D there exist some w V– D there exist some x V – D such that x  

N ( w ) then w, x  V – D, w adjacent to v, w, v belongs to some xi, i = 1, 2, a contradiction to our 

assumption on P. 

Conversely, assume that for every u  D, N ( u )  V – D for all w  D, N ( w )  V – D. If possible, 

assume that | P | = 3 = { x1, x2 , x3 } ( say ). Let one of xi, i = 1, 2, 3 be a  - set for G. Let x1 = D, this 
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means that x2, x3 V – D. By our assumption there exist no x, y  V – D , x  y. So x2 x3 is an 

independent set, which implies P1 = { x1, x2x3 } is a partition for G such that  

1. x1, x2 x3 are independent 

2. x1 is a  - set for G 

3. x2 x3 V – D  

That is, P1 is a chromatic partition for G such that | P1 | < | P |, a contradiction to our assumption that 

P is a chromatic partition for G. 

Remark 

1. For any tree, we know that | P | = 2,  so if P is chromatic partition for T such that   | P| = 2 = { 

x1, x2 } at least one of xi is a - set for T then by the above theorem, we conclude that the 

following statement 

T is a uniquely colorable tree if and only if for u  D , N ( u )  V – D , w  V   – D, N( w ) 

 D . 

By the Theorem 3, we conclude that  

R1: If T is a uniquely colorable tree then 

1. every internal vertex is two dominated 

2. if a pendant vertex u  D , then for the support vertex v adjacent to u, u is the only leaf. 

Theorem 4 

If T is a uniquely colorable tree then  ( T ) +  ( ̅) =  ( T ) + 2 

proof 

Since T has atleast two pendant vertices u1, u2 (say). In ̅, u1 dominates V ( ̅) – N (u1). N (u1) is 

dominated by u2 implies  ( ̅) = 2.  

3.1.  Trees 

Theorem 5 

Let T be a  - uniquely colorable tree. Let P = {V1,V2} be a  - chromatic partition for T. H is 

generated from T by attaching a  path P1 at u where u  V (G). Let  (H) =  (T). H is  - uniquely 

colorable if and only if u  V1. 

Proof 

Assume that H is  - uniquely colorable tree. There exist a  - chromatic partition P1 for H such that P1 

= {V1, V2}. Let D1 be a  - set for H and D be a  - uniquely colorable  - set for T. By assumption, | D1 

| = | D |. Let v be a new pendant vertex attach at u to generate H. Either v  V1 or u  V1. If v  V1, 

then D1 – { v } is a  - set for T such that | D | > | D1 – {v} |, a contradiction to our assumption that D is 

a  - set for T, implies u  V1. P2 = { P1 – {v}} = {V1, V2 – {v}} is a  - chromatic partition for T. P2 = 

P since T is  - uniquely colorable tree. 

Conversely, assume that u  V, we have to prove that H is  - uniquely colorable tree. D is a  - set 

for H and P3 = {P  {v}} = { V1, V2 {v}} is a chromatic partition for H such that  

1. V1 D. 

2. V2 V – D.  

3. N ( u )  V – D , for all u  D. 

4.  N ( w )   D , for all w  V – D . 

implies H is  - uniquely colorable tree. 

Note 

Theorem 5 states that, H is - uniquely colorable tree if and only if u  V1. If u is any vertex in H 

which is a good vertex but u  V1, then the resulting graph H need not be uniquely colorable. For 

example, consider the graph G in Figure 4 
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Figure 4. 

G is uniquely colorable with a   - chromatic partition  P = { { 1, 3 }, { 2, 4, 5 } }. { 2, 3 } is also a - 

set for G. Attaching a path of length 1 at  vertex 2 results to the graph seen in Fig. 5 which is not 

uniquely colorable. 

 
Figure 5. 

Theorem 6 

Let T be a  - uniquely colorable tree. Let P  = { V1, V2 } be a  - chromatic partition for T. H is 

generated from T by attaching a path P1 at u where u  V ( G ). Let  ( H ) =  ( T ) + 1 . H is  - 

uniquely colorable if and only if u  bad. 

Proof 

Assume that H is  - uniquely colorable tree. There exist a  - chromatic partition P1 for H such that P1 

= { V1, V2 }. Let D1 be a  - set for H and D be a  - uniquely colorable  - set for T. Let v be a new 

pendant vertex attach at u to generate. u is a bad vertex with the vertex to T else if u is good with 

respect to T, then D itself is a  - set for H, a contradiction to our assumption that  ( H ) =  ( T ) + 1 . 

 Conversely, assume that u is bad with respect to T. Since  ( H ) =  ( T ) + 1 , let D1 = D  { v } be a 

 - set for H. Since T is  - uniquely colorable, P1 = P  { v } = { V1 { v }, V2 } = { V3, V2 } is a 

chromatic polynomial for H such that 

1. v  V3 

2. u  V2 

3. N ( u )  V – D1, for all u D1 

4. N ( w )  D1, for all w  V – D1 

implies D1 is a  - uniquely colorable  - set for H and hence H is  - uniquely colorable tree. 

Theorem 7 

Let T be a  - uniquely colorable tree. Let P  = { V1, V2 } be a  - chromatic partition for T. H is 

generated from T by attaching a path P2 at u where u  V ( G ). Let  ( H ) =  ( T ) + 1. H is  - 

uniquely colorable if and only if u is not selfish with respect to T. 

Proof 

Assume that H is  - uniquely colorable tree. H is generated from T by attaching a path P2 to u. There 

exist a  - chromatic partition P1 for H such that P1 = { V1, V2 }. Let D1 be a  - set for H and D be a  - 

uniquely colorable  - set for T. Let the vertex adjacent to u be v and w be the vertex adjacent to v. If 

possible, assume that u is selfish with respect to T. Then D1 = D – { u }   { v } is a  - set for H. 

Since H is uniquely colorable there exist a  - uniquely colorable  - set D2 for H and a  - chromatic 

partition P1 = { V3, V4 } for H. Either v  V3 or w  V3 ( since w is pendant ). D3 = D2 – { v } is a - 

set for T such that | D3 | < | D2 | , a contradiction to our assumption that D2 is a - set for H. If v  V3, 

then u  V – D2 and u is 2 – dominated with respect to D2. If w  V3, then v  V – D2 and u  V3. D3 

= D2 – { w } is a  - set for T such that | D3 | < | D2 |, a contradiction to our assumption that D2 is a  - 

set for H.  
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Conversely, assume that u is not selfish with respect to T. We know that T is uniquely colorable and 

P = { V1, V2 } is a  - chromatic partition for T. D4 = D  { w } is a  - set for H ( since  ( H ) =  ( T ) 

+ 1 ). Also P2 = { P  { w } } = { V1 { w }, V2  } = { V5, V2 } is a chromatic partition for H such 

that  

1. N ( u )  V – D4, for all u  D4 and 

2. N ( w )  D, for all w  V – D4 

implies H is uniquely colorable. 

 

3.2.Tree characterization 

In this section, we present a constructive characterization of trees T that a   - uniquely colorable tree. 

Operation O1: Attach a tree path P1 to a vertex u of T to generate T1, so that  

1.  ( T ) =  ( T  ) 

2. u  D where D is a  - uniquely colorable  - set with respect to T. 

Operation O2: Attach a tree path P1 to a vertex u of T to generate T1, so that  

1.  ( T1 ) =  ( T ) + 1 . 

2. u is a bad vertex with respect to T. 

Operation O3: Attach a tree path P1 to a vertex u of T to generate T1, so that  

1.  ( T1 ) =  ( T ) + 1 . 

2. u is not a selfish vertex with respect to T.  

Let  be the family defined by  = { T / T is obtained from K1, by a finite sequence of operations O1 or 

O2 or  O3 }. 

From Theorem and we know that if T , then T is a  - uniquely colorable tree. 

Theorem 8 

If T is a  - uniquely colorable tree, then T .   

Proof 

We proceed by induction on the order n  1. If T is a star, then T can be generated from K1, by 

repeated application of Operation O1. Hence we may assume that diam ( T )  3. Assume that the 

Theorem is true for all tree T ' of order n' < n. Let T be rooted at a leaf r, of longest path r – u path P. 

Let v be the neighbor of u. Further, let w denote the parent of v. By Tx , we denote the subtree induced 

by vertex x and its descendants in the rooted tree T.  

Let T ' = T – Tu. Let dT ( v )  4, v is a support vertex with respect to T ' the number if pendant 

vertices adjacent to v is at least 2. Since T ' is uniquely colorable there exist a  - uniquely colorable   

- set D1 for T ' containing v, that is D1 is a -  uniquely colorable   - set for T ' containing v. Also  ( T 

) =    ( T ' ) implies T can be obtained from  T ' by operation O1 .  

Let dT ( v ) = 3. Label the pendant vertex adjacent to v as x. Any tree has a  - set containing all the 

pendant vertices. Let D1 be a  - set for T ' containing v. D1 itself is a  - set for T implies  ( T ) =    ( 

T ' ) . We know that T is  - uniquely colorable tree. In T, d ( v ) = 2, implies T has a  -  uniquely 

colorable   - set D  v  D (  R1 ) . D itself is a  - uniquely colorable   - set for T ' i.e., D is a  -  

uniquely colorable   - set for T ' containing v. Also   ( T ) =    ( T ' ) implies T can be generated from 

T '  by applying operation O2. 

If u D, then D1 = D – { u } is a dominating set for T ' . If T ' has a  - set D2 such that | D2 | < | D1 |, 

then  

D3 = {
   {   }                             

                                    
 

is a  - set for T | D3 | < | D |.W have assumed that D is a  -  uniquely colorable   - set for T. So a   - 

set with smaller cardinality is not possible, implies D1 is a  - set for T '.  

Let d T ( v )  = 2. Since T is  -  uniquely colorable there exist a  -  uniquely colorable   - set for D 

for T. Either u  D or v  D. If v  D, then since  ( T ) =    ( T '), T can be generated from T ' by 

applying operation O1. If v is a good vertex with respect to T ', then there exist a  - set D4 for T ' 
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containing v. D is a  - uniquely colorable   - set for T. So, a  - set for T with smaller cardinality is 

not possible implies D4 cannot be a  - set for T, implies v is a bad vertex with respect to T '. Also  ( T 

) =    ( T ' ) + 1 , implies T can be generated from T ' by applying operation O2. 

Let T ' = T – Tv. Since T is  - uniquely colorable and v is a support vertex, any  - uniquely 

colorable - set D for T contains either u or v. When u  D, w also belongs to D. When v  D, w is 

two dominated, then D1 = D – { u } or D1 = D – { u } is a dominating set for T ' . If T ' has a  - set D2 

such that | D2 | < | D1 |, then D3 = D2 { v } is a  - set for T such  that | D3 | < | D |. We have assumed 

that D is a  - uniquely colorable   - set for T. So, a  - set with smaller cardinality is not possible 

implies D1 is a   - set for T ' that is,  ( T ' ) =  ( T ) – 1. If w is selfish with respect to T ', then D4 = 

D1 – { w }  { v } is a  - set for T | D4 | < | D1 |, a contradiction to the assumption that  ( T ' ) =  ( T 

) – 1 implies w is not selfish with respect to T '. Also  (T ) =    ( T ' ) + 1 , implies T can be generated 

from T '  by applying operation O3 . 

As a immediate consequence of Theorems 5, 6 and 7, we have following characterization of   -  

uniquely colorable   - set. 

Theorem 9 

A tree T is  - uniquely colorable tree if and only if T .  

4.  Conclusion 

This paper contributes the necessary and sufficient condition, tree characterization of a  - uniquely 

colorable graphs. 
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