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Abstract. Subdividing an edge in the graph may increase the domination number or remains 

the same. In this paper, we introduce a new kind of graph called non - domination subdivision 

stable graph (NDSS). We obtain a necessary and sufficient condition for a graph to be NDSS. 

We provide a constructive characterization of NDSS trees and a MATLAB program for 

identifying NDSS graphs. 

1.  Introduction  

Dominating sets has been used in graph theory for characterizing graphs based on various properties. 

In [1], B. Sharada et.al have provided the problem of domination subdivision number of grid graphs 

Pm,n and determine the domination subdivision numbers of grid graphs Pm, n for m = 2, 3 and n  2.  In 

[2], Magda Dettlaff, Joanna Raczek and Jerzy Topp have proved that the decision problem of the 

domination subdivision number is NP - complete even for bipartite graphs In [3], Yamuna and 

Karthika provided a constructive procedure to generate a spanning tree for any graph from its 

dominating set,  – set and introduced a new kind of minimum dominating set and hence generate a 

minimum weighted spanning tree from a  – set for G. 

In [4], Prosenjit Bose et al provided the characterization yields a linear - time algorithm for 

recognizing and realizing degree sequences of 2 – trees. In [5], Gunasekaran and Nagarajan have 

provided the model by using Unified Relationship Matrix, which improves the movement of groups. 

In [6], Pushpalakshmi, Vincent Antony Kumar have presented a routing protocol based on distributed 

dominating set based clustering algorithm. In [7], Hsu andShan have proposed algorithms for finding 

the minimum connected domination set of interval and circular - arc graphs. In [8], Balaji et al 

provided a new approach for constructing the CDS, based on the idea of total dominating set and 

bipartite theory of graphs. 

In [9], Yamuna and Karthika have obtained the domatic number of the subdivision graph of a just 

excellent graph and proved the following result. 

R1. If u is an up vertex for a graph in G, then u must be included in every possible  – set. 

2.  Materials and methods 

We consider only simple connected undirected graphs G = ( V, E ) with n vertices and m edges. The 

open neighborhood of  v V ( G ) is defined by N ( v ) = { u  V (G) | uv E ( G ) }, while its closed 

neighborhood is N [ v ] = N ( v )  { v }. H is a subgraph of G, if V ( H )   V (G) and uv E ( H ) 

implies uv  E ( G ). If H satisfies the added property that for every uv  E ( H ) if and only if uv E ( 

G ), then H is said to be an induced subgraph of G and is denoted by  Hi. Two graphs are  

homeomorphic if one can be obtained from the other by the creation of edges in series or by the 
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merging the edges in series. In graph theory, K5 and K3, 3 are called Kuratowskis graph. A path is a 

trail in which all vertices ( except perhaps the first and last ones ) are distinct, Pn denotes the path with 

n vertices. A cycle is a circuit in which no vertex except the first ( which is also the last ) appears more 

than once. Cn is a cycle with n vertices. Kn is a complete graph with n vertices. A star Sn is the 

complete bipartite graph K1, n: a tree with one internal node and n leaves ( but, no internal nodes and n 

+ 1 leaves when n  1 ). The complement of a graph G is a graph  ̅ on the same vertices  two distinct 

vertices of  ̅are adjacent if and only if they are not adjacent in G. For the properties related to graph 

theory we refer to F. Harary[ 10 ]. 

A set of vertices D in G is said to be a dominating set if for every vertex of V – D is  to some vertex 

of D. The smallest possible cardinality of any dominating set D of G is called a minimum dominating 

set – abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it 

is denoted by  ( G ).The private neighborhood of v  D is defined by pn [ v, D ] = N ( v ) – N ( D – { 

v} ). A vertex v is said to be selfish in the MDS D, if v is required only to dominate itself. A vertex of 

degree one is called pendant vertex and its neighbor is called a support vertex. If there is a   – set of G 

containing v, the v is said to be good. If v does not belongs to any of the  – set of G , then v is said to 

be a bad vertex. A vertex v is known to be a down vertex if ( G - u ) < ( G ). A vertex v is known to 

be a level vertex if ( G - u ) =  ( G ). A vertex v is said to be a up vertex if ( G - u ) > ( G ). For the 

properties related to domination we refer to Haynes, Hedetniemi, and Slater [11]. 

A subdivision of a graph G is a graph obtained from the subdivision of edges in G. The subdivision 

of some edge e with end vertices { u , v } generate a graph with one new vertex w, and with an edge 

set replacing e by two new edges, { u, w } and { w, v } and it is denoted by Gsduv. Let w be the vertex 

introduced by subdividing uv. We shall denote this by Gsduv = w. If G is any graph and D is a  – set 

for G, then D  { w } is a  –  set for Gsduv implies  ( Gsduv )  ( G ),  u, v V ( G ), u  v. A 

graph G is defined as DSS, if  ( Gsduv ) =  ( G ),  u, v V ( G ), u  v  [ 12 ]. In [ 12 ], the 

following result is proved. 

R2. A graph G is domination subdivision stable if and only if  u, v V( G ), either  a  – set 

containing u and v or  – set D such that 

1. pn ( u, D ) = { v } or 

2. v is 2 –  dominated. 

In this paper we consider graphs for which ( Gsduv ) =   ( G ) + 1. 

3.  Results and Discussion 

In this section we introduce a new kind of graph called NDSS graph. We provide a necessary and 

sufficient condition for a graph to be NDSS and prove some results satisfied by NDSS graphs. 

3.1.   Non - domination subdivision stable graph 

A graph G is said to be non - domination subdivision stable ( NDSS ) if   ( Gsduv ) =   ( G ) + 1 for 

all u, v V ( G ), u adjacent to v. 

Example of NDDS graphs 

1. P3n is NDSS. 

2. C3n is NDSS. 

3. Complete graph Kn. 

4. Star graph Sn. 

5. The graph G in Fig. 1 is NDSS. 
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Figure 1. 

In Fig. 1  ( G ) = 2,   ( Gsd23 ) = 3. This is true  u, v V( G ), u  v. 

Theorem 1 

A graph G is NDSS if and only if for every possible  – set D for G, N ( u, D ), N ( v, X )  V – D for 

all u  D, v  D where X = B ( D ). 

Proof 

Let G be NDSS graph. Let D { u1, u2,…, uk }be a  – set for G, X = { x1, x2, …, xp} = B ( D ), Y = { 

y1, y2,…, yq } = B ( X ). 

1. If there exist some xi  N ( uj ), i = 1 to p, j = 1 to k such that xi adjacent to uj, xj, uj D.  ( 

Gsdxiyj ) =  ( G ) since, xi, uj dominates w. 

2. If there exist some ui, xj, yl such that ui adjacent to xj, xj adjacent to yl, ui ,yl D.  ( Gsduixj ) = 

 ( G ) since ui dominates w and yl dominates xj. Also ( Gsdxjyl ) =  ( G ) since yl dominates 

w and uidominates xj. 

In both cases, we get a contradiction to assumption G is an NDSS graph. 

Conversely, assume that for every  – set D of G, N ( u, D ), N ( v, x)  V – D where X = B ( D ). 

We have to prove G is NDSS. If possible assume that G is NDSS. This means that G is not NDSS. 

This implies that ( Gsduv ) =  ( G ). 

By DSS, ( Gsduv ) =  ( G )  if and only if   

 u, v  D. 

 if u  D, v is 2 – dominated. 

 pn ( u, D ) = { v }. 

If u, v  D, u adjacent to v is not possible since N ( u, D )  V – D by our assumption. 

If u D , v is 2 – dominated is not possible since N ( v, x )  D by our assumption. 

If pn ( u, D ) = { v }, let D =  D – { u }  { v }. Let Z = N ( v ) = { z1, z2, …, z s }. In D there exist 

one b  D such that b is adjacent to some zi Z ( since pn ( u, D ) = v, zi is dominated by b ) v, b  D, 

a contradiction to our assumption that for any u  D, N ( v, x )  V – D where X = B ( D ).  

In all these cases, we get a contradiction to our assumption, implies G is NDSS. 

Remark 

1. Since for any u  D, N ( u, D )  V – D, we conclude that if G is NDSS then every  – set of 

G is independent. 

2. Since N ( u, D ), N ( v, X )  V – D, where x  B ( D ), we conclude that if G is NDSS then 

no vertex in V – D is 2 – dominated.  

NG - type result 

Theorem 2 
If G is a NDSS graph, then 

( G ) +   (  ̅ )  
 

 
 + 2  

( G ) .   (  ̅ )   2 
 

 
 

Proof 
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Let G be a NDSS graph. Let D = { u1, u2, ….,  uk } be a  – set for G. pn ( u , D )  2  u  D, implies 

n = D + pn ( u, D ) + k, k a non – negative integer. n = 3D + k, implies D 
       

 
 . If pn ( ui, D ) = 2 

for all ui D then k = 0, implies | D | 
 

 
. In G, ui dominates V ( G ) –  pn ( ui, D). In  ̅ any uj , j ≠  i 

dominates pn ( ui , D), implies  (  ̅) =  { ui,  uj } = 2. 

( G ) +   (  ̅ )  
 

 
 + 2  

( G ) . (  ̅ )   2 
 

 
 . 

Remark 

By Theorem 2, for any ui, uj D,   (  ̅) = { ui,  uj }. Also every   – set of D is independent, implies ui 

is adjacent to uj in G, implies G is not NDSS. So if G is a NDSS graph, G is never NDSS. 

Theorem 3 

If a graph G has a unique independent  – set, every v V – D pn ( u, D )  u  D, then  ( Gsduv ) 

=   ( G ) + 1  u, v V ( G ), u  v. 

Proof 

Let G be a graph having a unique independent   – set D,  every v V–  Dpn ( u, D ) for some u  

D. If possible let D = ( Gsduv ) =   ( G ) for some u, v V ( G ), u  v. Let ( Gsduv ) = w. We 

consider the following cases. 

Case 1: u  D, w, v  D 

Since v  D there exist one x  V ( G ) that dominates v, implies D is a  - set for G  v is two 

dominated , a contradiction. 

Case 2: v  D, u, w  D 

We get a contradiction similar to case 1. 

Case 3: w  D, u,  v D 

In this case D = D – { w }  { u }, D – { w }  { u } are two possible  - sets for G, a contradiction 

to our assumption that G has a unique  - set. 

Case 4: u, w  D, v  D 

w dominates only v. D = D – { w }  is a   - set for G ( since in D, u dominates v ), a contradiction 

as | D | < | D |. 

Case 5: w, v  D, u  D 

We get a contradiction as in case 4. 

Case 6: u, v  D , w  D 

D is a  - set for G a contradiction as D  is not independent. 

By the above cases we conclude that   ( Gsduv ) =  ( G ) + 1  u, v V ( G ), u  v. 

Remark 

1. If G has no unique independent  - set, then  ( Gsduv ) may be equal to  ( G ).  

 
Figure 2. 

For the graph G in Fig. 2 { 6, 8 }, { 7,  4 } are 2   - sets for G. Also   (Gsd89) = 2. 
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2.  If every v V - D pn( u , D ), for some u  D, then   (Gsduv ) may be equal to   ( G ).  

 
Figure 3. 

For the graph G in Fig. 3  ( G ) = { 2, 6 }, { 8; 4} pn ( 4, D ) or pn ( 8,  4 ).  (Gsd64) = 2. 

Theorem 4   

Every graph is an induced subgraph of a NDSS graph. 

Proof 

Let G be any graph with n vertices. If G is NDSS then there is nothing to prove. Assume that G is not 

NDSS. Consider a cycle Cn. Label the vertices of Cn as u1, u2, …, un. In Cn we add edges uiuj if and 

only if vivj is an edge in G ( retaining the graph simple ). Consider n copies of P3. Label the vertices in 

P3 as vi, wi, zi , i = 1 to n. Obtain a new graph H by merging ui, vi i = 1 to n. Label the merged 

vertices uivi as xi, i = 1 to n. D = { wi,  i = 1,  2, …, n } is a unique   - set for H, implies   ( H ) = n.  

In graph H, D is a   - set such that 

1. D is unique. 

2. D is independent. 

3. every v V - D is private neighbor of some u  D, implies   ( Hsduv ) =   ( H ) =   ( G ) + 1   

u, v  H, u  v, ( by Theorem 3 ) implies H is NDSS. 

 
Fig. 4 
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Figure 5. 

The graph G in Fig. 4 is not NDSS. We see that this is an induced subgraph in Fig. 5. Also the graph 

in Fig. 5 is NDSS. 

3.2.  Tree Characterization 

In this section we prove that any NDSS tree has a unique   - set. We also provide a constructive 

characterization of NDSS trees. 

Theorem 5  

If T is a NDSS tree, then G has a unique   - set. 

Proof 

Since pn ( u , D )  2,  u  D, for a NDSS graph there exist no   - set for G including a pendant 

vertex, implies every support vertex is included in every   - set. If possible assume that the   - set of 

T is not unique. Since every support vertex is in every   - set there exists an internal vertex u such that 

there exist a  - set D including u and a   - set D not including u. 

Claim 1 

u is an up vertex with respect to D. 

Proof 

Since u cannot be a down vertex ( If G is a NDSS graph, then G has no down vertices ) u is either a 

level or an up vertex. If possible let us assume that u is a level vertex. 

T – { u } is a disconnected graph with at least two components. Without loss of generality assume 

that T – { u } is a disconnected graph with two components T1,  T2.  ( T1 ) + ( T2 ) =   ( T ). Also pn( 

u, D )  2 . Assume that pn( u, D ) = 2 = { u1, u2 }( say ). Let us assume that u1 V ( T1 ) , u2 V ( T2 

). Let D1 D be the set of all vertices in D  V ( T1). Let D2 D be the set of all vertices in D  V ( T2 

). Let D1  be a   - set for T1 and D2  be a  - set for T2. Since | D1 + D2 | = | D |, either D1=  | D1 |+ 1 

or D2  = | D2 |+ 1. Assume that D1 = | D1 | + 1. D1 dominates T1 – { u1}. D1{ u1 } dominates T1. D3 = 

D1{ u1 } D2   is a  - set for T such that pn  ( u1, D3 ) = u, a contradiction as T is NDSS implies u is 

not a level vertex. Hence u is an up vertex. By claim 1 we know that any internal vertex in D is an up 

vertex. Also any support vertex is an up vertex in D, no pendant vertex belongs to D, implies every 

vertex in D is an up vertex and hence D is unique. 

Theorem 6 

Let G be a NDSS graph, u  V (G). Let H be the graph obtained by attaching P1 to u. If H is NDSS 

then ( H ) =  ( G ). 

Proof 

Suppose   ( H ) ≠  ( G ), then |  ( G ) | < |  ( H ) |. Let D be a - set for G such that | D | < | ( H ) |. 

u D ( since if u  D, | D | = |  ( H ) |. as D dominates H also ). Since u  D, there exist atleast one 

x  D such that x  N ( u ) to dominate u. Then D = D { u } is a  - set for H such that u, x  
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Dsuch that u is adjacent to x, a contradiction as H is NDSS implies,  ( H ) =  ( G ). Hence D is a   - 

set for H, G  u  D. 

 
Figure 6. 

Let D = { 1,  u} be a   - set for G1. ( G1 ) = ( G2 ) . ( G3 ) = ( G1 ) + 1. Also u  D, while w  D. 

We generalize this observation in Theorem 7. 

Theorem 7  

Let G be a NDSS graph, u  V ( G ). Let D be a   - set for G. Let H be the graph obtained by 

attaching P1 to u. H is NDSS if and only if  u D. 

Proof 

Let us label the new pendant vertex in H as v. Assume that H is NDSS. Since pn( u, D )   2 for a 

NDSS graph, there exist no  - set for H including v, implies u is included in every  - set for H. 

Conversely assume that u is a  - set for G such that u  D. Since ( G ) =  ( H ), D dominates H also. 

Every   - set of H is independent Suppose that D is not independent. Since deg (v) = 1, both u, v  D, 

implies there exist one v1, v2 V ( G ) such that v1, v2 D , v1 is adjacent to v2. D is a  - set for G 

also, a contradiction as G is NDSS. H has no 2 - dominated vertex. If possible assume that H has a 2 - 

dominated vertex. Since v is pendant, v is never 2 - dominated, implies there exist one v1 V ( G ) 

such that v1 is 2 - dominated with respect to D, a contradiction as D is a  - set for G also, G NDSS. 

From the discussions, we conclude that H is NDSS [ by remark of Theorem 1 ]. 

 
Figure 7. 

Let D = { 3, v } be a  - set for G1. ( G2 ) = ( G3 ) =  ( G1 ) + 1. We observe that if P3 is attached to a 

good vertex then, H is not NDSS, while if P3 is attached to a bad vertex, then H is NDSS. Also u  D, 

while w  D. We generalize this result in Theorem 8. 

Theorem 8  

Let G be a NDSS graph and let u  V (G). Let H be the graph obtained by attaching P3to u. H is 

NDSS if and only if u is a bad vertex with respect to G. 

Proof 

Let us assume that G is NDSS, u  V ( G ). Let H be the graph generated by attaching a path P3 to u. 

Let v1, v2, v3, v4 be the attached path. Let v1 be joined to u.   ( H ) =  ( G )  { v3} =  ( G ) + 1. If 
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there exist a  - set D for G containing u, then D = D { v3} is a  - set for H  v2 is 2 - dominated, a 

contradiction as H is NDSS, implies u is a bad vertex in G.  

Conversely, assume that G is a NDSS graph, u  V (G), u a bad vertex with respect to G.  

Every  - set of H is independent 

If possible assume that  a  - set D for H that is not independent. If v2, v3 D then D - { v2}  f{ v}  

is a  - set for G. If v3, v4 D then D - { v4}  { v} is a   - set for G. In both cases u is a good vertex, 

a contradiction to our assumption that u is bad. If there exist some ui, uj V ( G ), ui adjacent to uj , ui, 

uj D, then since u is a bad vertex D - { v3}  is a   - set for G such that ui adjacent to uj , a 

contradiction as G is NDSS, implies every   - set of H is independent. 

H has no 2 - dominated vertex 

If possible assume that H has 2 - dominated vertex. If v2 is 2 – dominated then u, v3 D, a 

contradiction as u is a bad vertex. If v3 is 2 - dominated then v2, v4 D. D = D – { v4}  { v} is a   - 

set for H containing u, a contradiction as u is a bad vertex. If there exist some ui, uj D, ui, uj V ( G ), 

x adjacent to ui,  uj , then D -  { v3} is a   - set for G  x is 2 - dominated, a contradiction as G is 

NDSS. From the above discussion, we conclude that H is NDSS. 

By attaching a path P to a vertex v in T, we mean that adding the path P and attaching v to a pendant 

of P. 

Operation O1 Attach a path P1 to good vertex v of T. 

Operation O2 Attach a tree path P3 to a bad vertex v of T. 

Let  be the family defined by  = { T / T is generated from P2 by a finite sequence of operations O1 or 

O2 }. 

From Theorem 7 and Theorem 8 we know that if T  , then T is a NDSS tree. 

Theorem  9 

If T is a NDSS tree, then T  . 

Proof 

We proceed by induction on the order n  3 of a NDSS tree. If T is a star, then T can be generated 

from P2 by frequent application of operation O1. Hence we assume that diam(T)  3. Assume that the 

lemma is true for all tree T of order n< n. Let T be rooted at a leaf r of a longest path P. let D be a  - 

set for T. Let P be a r - u path. Let v be the neighbor of u. Let w represent the parent of v, x and y are  

the parent of w and x respectively. By Tx we denote the subtree induced by vertex x and its 

descendants in the rooted tree T. Since T is NDSS dT (v)    2. Let T = T – Tu. If dT (v) = 2, then pn( 

v, D ) = { u, w } and v  D, since v is support vertex. v is a pendant with respect to T. Let D be a  - 

set for T that contains all the support vertices, implies w  D. Also v  D. Since  ( T ) =  ( T ) [by 

Theorem 6] , D, D are two distinct  - sets of T, a contradiction as T NDSS [ Theorem 5 ]. Hence dT 

(v)   3, implies v  to atleast two leaves. Let D be a  - set that contains all the support vertices for 

T, implies v  D. Hence T can be generated from T by operation O1.  

Suppose dT (w)  3. Tw – { w } is either K1 or K2, since P is the longest path. Assume that Tw – { w 

}contains K1. If D is the  - set for T containing all the support vertices, then w, v  D, a contradiction 

as G is NDSS. Assume that Tw – { w } contains only K2. Since dT (w)    3, Tw – { w } contains atleast 

two components, each component K2. One component is uv. Label the other component as v1, u1. v1 

adjacent to w. Let D be a  - set that contains all the support vertices for T. v, v1 D, implies w is 2 - 

dominated, a contradiction. Hence dT( w ) = 2. Let T = T  –  Tw. Let D be a  - set for T such that x  

D. Then D{ v } is a   - set for T  w is two dominated, a contradiction as T is NDSS. So there exist 

no  - set for T containing x. Since x is a bad vertex T can be obtained from T by Operation O2. 

As a consequences of Theorem 7 and Theorem 8, we have the following characterization for NDSS 

trees. 

Theorem 10  

A tree T is NDSS if and only if T . 
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3.3.  Matrix representations 

Let G be a graph with n – vertices. Let A and N denotethe adjacency matrix and n n matrix of G, 

where 

N = [ nij]n n =  {
                                                                           

               
                                 

 

Let 
T

1 2 nx = x ( v ), x ( v  ), , x ( v  )  be a { 0, 1 } vector. If x represents any dominating set, 

then Nx 1. 

 
Figure 8. 

The corresponding vector x =  0, 0, 1, 0, 0, 1, 0 . We see that Nx 1. 

 

 

N = 

(

 
 
 
 

       
       
       
       
       
       
       )

 
 
 
 

  x = 

(

 
 
 
 

 
 
 
 
 
 
 )

 
 
 
 

  Nx =  

(

 
 
 
 

 
 
 
 
 
 
 )

 
 
 
 

 

 

Nx is a column matrix.  In any row of matrix N, the number of non zero entries represents N [ vi] and 

x represents a dominating set. Every entry in Nx represents the number of vertices dominating any 

vertex vi. If row entryvi in Nx is 1, then vi V – D is a private neighbor. Similarly if row entry vi in 

Nx 2, then vertex vi V – D is k – dominated by x.  

Finding a dominating set using matrix method can be used to characterize graphs satisfying a given 

domination parameter. Graph characterization based on dominating set focus on  – set and all 

possible  – sets satisfying the defined property. For this purpose, since we are more focused in all 

possible  – sets than all possible dominating set, we use the following notation. 

Notation 

1. Let G be any graph with n vertices v1, v2,…,vn. Let ( G ) = k. Label the all possible subsets 

with k vertices as S1, S2, …, Sp, where p = nCk. Let X = { x1, x2, …, xp} be a set of { 0, 1 } 

vectors given by xi =  x ( v1 ), x ( v2 ), …, x ( vn ) 
T
,   where x ( vi )  = {

               

            
   Using 

the above notation if  ( G ) = 2, n = 5, S1 =  then S1= { v1, v2 },  S2= { v1, v3 },   S3= { v1, v4 }, 

S4= { v1, v5 }, S5= { v2, v3 }, S6= { v2, v4 }, S7= { v2, v4 }, S8= { v3, v4 }, S9= { v3, v5 },              

S10 = { v4, v5 }. So, x1 =  1, 1, 0, 0, 0 
T
,  x2 =  1, 0, 1, 0, 0 

T
, x3 =  1, 0, 0, 1, 0 

T
, x4 =  1, 0, 

0, 0, 1 
T
, x5 =  0, 1, 1, 0, 0 

T
 , x6 =  0, 1, 0, 1, 0 

T
,  x7 =  0, 1, 0, 0, 1 

T
,  x8 =  0, 0, 1, 1, 0 


T
,  x9 =  0, 0, 1, 0, 1 

T
,  x10 =  0, 0, 0, 1, 1 

T
,. 

2. Nxi is a column matrix. Let us denote this as vector,  nxi = nxi ( v1 ), nxi ( v2 ), …,  nxi ( vn )  
T
.  

3. Define a matrix of vectors V as V = [ vij] n  p = [ x1, x2 ,…, xp],  each xi, i =  1, 2, …, p 

represents a vector defined in notation 1. Determine NV, where each column represents vector 

xi, that is the columns represents vector nx1, nx2, …, nxp. 

If x is any vector representing a  - set then, each entry in matrix Nx represents the number of vertices 

dominating any vertex in G i.e., if an entry value in Nx is 4, then it is dominated by 4 vertices. Let G 
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be a NDSS graph. By remark 1 of Theorem 1 we know that G is NDSS if every  - set of G is 

independent, G has no two dominated vertices. If D is a dominating set and xi is any vector 

representing D then Nxi = [ 1, 1,…,1 ]
T
 . Consider NV. If NV contains no zero entry, then every xi, i = 

1, 2, ...,p are - set for G, implies there is at least one non independent   - set for G, implies G is not 

NDSS. If NV has atleast one zero entry, then consider the non zero column of NV. Let S  x be the set 

of all vectorsNxi1, that is NS  1. Let | S | = q, q < p. Consider the i
th
 column of NS, that is vector 

nxi. We know that nxi =  nxi (v1) ,nxi ( v2 ) , …, nxi ( vn ) 
T
 . If there exist atleast one vj , j = 1 to n 

such that nxi ( vj)  2, then vertex vj is two dominated. So for every xi, i = 1 to q. If nxi =  1, 1,…, 1 
T
 

, then every vertex in G is single dominated, implies D is independent and every v V – D is a private 

neighbor of some u  D. That is if in matrix NS all entries are 1, then G is NDSS. 

Example 

 
Figure 9. 

 

Consider all possible subsets with two vertices and label them as { S1, S2, S3, …, S15 } = {{ v1, v2}, { 

v1, v3}, { v1, v4}, { v1, v5}, { v1, v6 }, { v2, v3 }, { v2, v4 }, { v2, v5 }, { v2, v6 }, { v3, v4 }, { v3, v5 }, { v3, 

v6 }, { v4, v5 }, { v4, v6 }, { v5, v6 } }. 

 

NV =

(

  
 

      
      
      
      
      
      )

  
 

(

  
 

      
      
      
      
      
      

      
      
      
      
      
      

   
   
   
   
   
   )

  
 

 

 

(

  
 

      
      
      
      
      
      

      
      
      
      
      
      

   
   
   
   
   
   )

  
 

 

 

From the matrix NV the only non – zero column corresponds to the vector xi =  1, 0, 0, 0,  1, 0 . The 

corresponding  - set is { v3,  v6 }. In matrix NV this column corresponding to Nxi is 1s.  1, 1, 1, 1, 1, 

1 
T
 . Hence G is NDSS.  

3.4.  MAT Lab program for NDSS graphs 

Based on the above discussion snapshot - 1 provides a MATLA code for identifying NDSS graphs. 

Snapshot - 2 provides the output for the graph in Fig. 9. We see that the output matches the discussion 

for the graph in Fig. 9.  
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Snapshot 1. 

Output 
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Snapshot 2. 

 

4.  Conclusion 

This paper contributes the necessary and sufficient condition, tree characterization of an NDSS graph 

and also provides a method of identifying NDSS graphs using MATLAB program. 
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