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Abstract. Time series is an important part of decision making and several results are 

constructed on estimates of forthcoming events. In the Time series process, since, for the 

coming actions include probability; the predictions are frequently not perfect. The objectives of 

the Time series are to decrease the prediction error; to create predictions that are rarely 

improper and that have minor prediction mistakes. In selecting a suitable Time series model, 

the researcher wants to be responsive that numerous altered models may have comparable 

properties. A good model will fit the data well. The goodness of fit recovers as additional 

limits are involved in the model. This arises a problem with the ARMA (p ,q) models, because 

p and q take low values. It should be noted that the best model fit need not imply to provide 

best forecasts. There exists several model selection criteria that trade off a decrease in the sum 

of squares of the errors for a more sparing model. A goodness of fit criterion for ARMA (p, q) 

model and modified selection criteria for Time series models have been suggested in the 

present study. 

1.  Introduction  

Formation for the forthcoming is the principle of any business. Business requisite estimates of for the 

coming values of corporate variables. Industry needs predictions of quantity, transactions and request 

for production planning and financial decisions [1, 2]. There are suitably of Time series models 

available and “choosing the right one” is not an informal task.  

The business nature, the data nature, forecast limit, projection life of the model and the estimated 

precision of the predictions. Predictions that are established on statistical Time series models are 

known as quantitative forecasts. Once the Prediction model has been specified, the corresponding 

forecasts are unbendable mechanically. 

 

2.  Selection of time series models 

At the time series phase, the last time series model is recycled to obtain the predictions. These 

predictions are contingent on the quantified time series model, one makes certain that the Time series 

modelling and its parameters break continuous during the prediction period. The constancy of the 

projection modelling can be measured by checking the predictions beside the new explanations [3]. 

Prediction errors can be computed and probable deviations in the Time series modelling can be 

noticed. 

The prediction distance is too vital, since these procedures that create long-term and short-term 

predictions differ. Generally, a forecaster prefers to build models [4], which are informal to recognize, 

practice and clarify.  An intricate advanced model may principal to additional precise predictions but 
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may be additional expensive and problematic to instrument [5]. In practice, in a excellent between 

completing models [6]. Also, an significant thought in the special of an suitable prediction model is 

the obtain ability of appropriate data; one cannot imagine to build precise experiential prediction 

models from a incomplete and inadequate data base [10]. 

 

3.  Time series from regression model 

The regression models can be written as[15] 

 i i iy f x ;             (3.1) 

here if (x ; )  is a statistical function of the k independent variables 

 i 1i 2i kix x ,x ,......, x   and unknown parameters  1 2 m, ,......,      , 

i  is a random error variable.  

Assumptions on i : 

(i)  iE 0   and Var   2

i ,    a constant, i 1,2,.....,n.   

(ii)    i j i jCov , E 0, i j         is 

(iii)  
*.

2

i N 0,   

When the y dependent variable then  the assumption as  

(i)    i i iE y / x f x ;   and   2

i iVar y / x    is independent of xi.  

(ii)      i j i i j j iCov y ,x E y f x ; y f x ; 0, i j 1,2,.....,n              
 

(iii) Conditional on xi, the dependent variable;  

  
i.i.d.

2

i iy N f x ; ,   

(iv) The independent variables are fixed and non-stochastic. 

 

The linear model is  

i o 1 1i 2 2i 3 3i 4 4i k 1 (k 1)i k ki iy x x x x .......... x x        
     

(3.2) 

Here K explanatory variables and If 's  and  are known parameters, then the conditional 

expectation can be written as    o o oE y / x f x ;   

The prediction of yo by 0ŷ and then the predicted error by  o o 0
ˆe y y .   The expected value of this 

error  is given by 

      
22

2 2

0 o o o o o
ˆ ˆE E f x ; y E f x ; y                     (3.3) 

It is minimized is  o oŷ f x ;           (3.4) 

Since, the parameters ‟s and   are known parameters in regression model.

     1 1 2 2 n ny ,x , y ,x ..........., y ,x .  If ̂  be an estimate of  , then  o o
ˆŷ f x ;  can be taken as 

a forecast for yo
. 
 The parameter estimates that minimize the sum of squared deviations 

   
2n

i i

i 1

R y f x ;


       are known as the least squares estimators and are denoted by ˆ.  
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4.  ARMA(p, q) processes: 

An ARMA (p,q) process contains both autoregressive and moving average terms as follows. 
p q

t 0 i t i i t i
i 1 i 0

y y   
 

               (4.1) 

By the convention of normalizing units, 0  is always equal to unity. Thus, ARMA (p, q) can be 

rewritten as 

t 0 i t i t

1 t 1 2 t 2 q t q

y y ..............

.................

 

  



  

   

      


        (4.2) 

If q=0, then ARMA (p,q) reduces to a pure AR (p) process and if P=0, then ARMA (p,q) reduces to a 

pure MA (q) process. 

By using the lag operators, (4.2) may be written as 

   2 3 q

1 i t i t 0 1 2 3 q tL y y 1 L L L ........... L                   (4.3) 

Provided that the roots of  
i

i1 z 0   lie outer the unit circle and both sides of (4.3) can be divided by  i

i1 L  to get  

t ty (L) ( )               (4.4) 

where 0

1 2 p1 ..................




  


   
        (4.5) 

 

and 

2 q

1 2 q

2 p

1 2 p

1 L L ...... L
(L)

1 L L ......... L

  


  

  


   
        (4.6) 

j
j 0






            (4.7) 

The  L is defined as linear operator such that for any value yi 

i

t t iL y y              (4.8) 

ARMA process be influenced by entirely on these parameters  1 2 p, .......    and not on the morning 

average parameters  1 2 q, ....  
         

(4.9)
 

Thus, after q lags, the autocovariance function 1  follows the p
th
 order difference equation governed 

by the autoregressive parameters.       (4.10) 

Also, the autocorrelation coefficients j  is satisfy 

j i j i , j q 1 ,q 2,..........       
      

(4.11) 

The stationary ARMA (p,q) process satisfying (4.3) is identical to the stationary  

With p-1 and q-1 ARMA Process 

The ARMA (1,1) process model without constant term as   

t 1 t 1 t 1 t 1y y             (4.12) 

The autocovariances for ARMA (1,1) are given by 
2

1 1 1
0 2

1

1 2

(1 )

  




 



        (4.13) 

1 1 1 1
1 2

1

(1 ) ( )

(1 )

   




 



        (4.14) 

Also, s s 1, , s 2,3,.....      
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The ARMA (1,1) process is given by 1 1 1 1
1 2

1 1 1

(1 ) ( )

(1 2 )

   


  

 


 
    (4.15) 

And  s 1 s 1 , s 2             (4.16) 

 

5.  Goodness of fit criterion for ARMA model: 

The standard practice for „diagnostic checking‟ is to plot the errors to check outliers and for indication 

of periods in has not a goodness of fit in the model. If ARMA models reveal confirmation of a low fit 

during a practically long part in the sample, it is better practice to reflect models other ARMA models 

such as models for intervention analysis. Models for transfer function analysis etc. If the residuals 

variance increases then a logarithmic transformation may be appropriate or an ARCH model may be 

considered in practice. 

If there are sufficient observations, fitting the ARMA (p, q) model to each of the subsamples can 

provide the useful information concerning the assumption that the data generating process is 

unchanging. 

Suppose an ARMA (p, q) model has been estimated by using a sample of n observations. Divide the n 

observations into two subsamples with tm observation in first subsample and (n – tm) observations in 

the second subsample, using each subsample to estimate the following two ARMA (p, q) models. 

sub Sample I: yt =α0
1
 + α1

1
 yt-1 +……+αp

1
yt-p+t+β1

1
t-1  +………+ βq

1
t-q                    (5.1) 

Using t1, t2 ……., tm 

Sub Sample II : yt=α0
2
+α1

2
 yt-1+……+αp

2
 yt-p + t  + β1

2 
t-1………+βq

2
t-q                      (5.2)                 

Using tm+1, tm+2, …..tn 

First compute the OLS residuals and then Internally studentized residuals and hence obtain the sum of 

squared internally studentized residuals from each model as (RSS)I and (RSS)II respectively. Let RSS 

be the sum of squares due to internally studentized residuals for the model based on n observations. 

The corresponding coefficients in the two Time series models 

Ho : α0
1 
=  α0

2
, α1

1
 = α1

2
, ……..,αp

1 
=αp

2
; β1

1
 = β1

2
, β2

1
 = β2

2
, ……, βq

1
 = βq

2
 

the F - test statistic is given by 

 

  , 2

( ) ( ) /

( ) ( ) / 2


 


 

I II
k n k

I II

RSS RSS RSS k
F F

RSS RSS n k
        (5.3) 

 

Here, K = No. of Parameters estimated (k = p + q + 1, if intercept is included) for larger calculated 

value of F the Ho many not be accepted 

 

6.  Modified model selection criteria for time series models: 

Generally, there will be several plausible models that one can select to use for forecasts. It should be 

noted that best model fit need not imply to provide best forecasts in model selection criteria [19]. 

If one wishes to choose between an AR (1) and an MA (2) one may estimate an ARMA (1, 2) and then 

restrict the MA (2) coefficients to equal zero. On the other hand one may restrict the AR (1) 

coefficients to equal zero. But, this method is unsatisfactory because it necessitates estimating the over 

parameterized ARMA (1, 2) model. Instead, one can use model selection criteria to choose between 

alternative models. Such model selection criteria can be noticed as goodness of fit measures. In 

parameter estimation, forecast error variance increases as a result of errors arising and  it is not 

desirable to consider it for Time series in practice  

The Akaike Information Criteria (AIC) and the Schwartz Bayesian Criterion (SBC) based on the 

concept of Mean Squared Prediction or Forecast Error (MSPE). 

Mean Squared Prediction Error: 

Consider the true data – generating process AR(1) model as 
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t t 1 ty y              (6.1) 

If   is known, the forecast  with t 1y   is 

 t t 1 tE y y             (6.2) 

The mean squared prediction error is given by 

   2 2

t t 1 t t t 1E y y E               (6.3) 

when  is estimated from the data, the one-stop-ahead forecast of t 1y   is given by 

 t 1 t
ˆE y y             (6.4) 

Where ̂  is an estimate of  Now, the MSPE is given by, 

MSPE =    
22

t t 1 t t t t t 1
ˆE y 2y E y y  

            (6.5) 

Since, t 1 is independent of ̂  and ty ,  one may obtain, 

       
2 22 22 2

t t 1 t t t t t
ˆ ˆ ˆE y y E y E y                        (6.6) 

Since, Var  
2

t 2
y

1







and in large samples, 

Var    
2

2

t

1
ˆ ˆE ,

n


  


     one may obtain, 

   
 2 2

2 2 2 2 2

t t 2

1 1
ˆE y 1

n 1 n

 
    



      
                     

     (6.7) 

It shows that as n increases the MSPE approaches 
2.  Here „n‟ denotes the number of usable 

observations under the Finite Prediction Error (FPE) criterion, one may minimize the one-step-ahead 

MSPE. Then AR (P) process as 

t i t i p t p ty y y              (6.8) 

One may obtain the MSPE for this AR(p) process as 

MSPE = 
2p

1 .
n


  
   
  

          (6.9) 

Generally, 
2  is unknown. 

However 
2 can be replaced with an estimate,  

2n
*

t
2 r 1

e

n p
 




         (6.10) 

Where  
2n

*

t
r 1

e


 is the Internally studentized residuals sum of squares obtained by using AR (P) model. 

Now, the modified FPE is given by  

FPE =
2n

*

t
t 1

p
1 e / n p

n 

    
        

        (6.11) 
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One can select p by minimizing FPE. By using logarithms one can approximate 
p

Ln 1
n

 
 

 
 by 

p
.

n

 
 
 

 Thus, it is possible to select p to minimize the modified 

 
2n

*

t
i 1

p
FPE as ln e ln n p

n 

 
  

  
  

Further, it is the same to minimize 

 
n

*2

t
t 1

p n ln e (n)(ln* n (p) )


 
  

  
  

Since,  
p

ln[n ,
n

 n n p ]l   p may be selected by minimizing  

 
2n

*

t
t 1

p (n )ln e ln n p


 
   

 


 
Generally, the AIC selects the K(=p+q+1) parameters of an ARMA (p, q) model so as to maximize the 

log – likelihood function including a penalty for each parameter estimated. 

AIC = -2 ln maximized value of log likelihood + K

n
     (6.12) 

For a given value of n, selecting the values of p and q, so as to minimize ln (AIC) is equivalent to 

selecting p and q so as to minimize the sum  

n ln
2n

*

t
t 1

e 2K.


 


  
  

Now, the modified AIC is given by 

 
2n

*

t*
t 1

AIC n ln e 2k


 
 

  
        (6.13) 

Where k = number of parameters estimated  

The SBC incorporates  larger penalty n(p q 1)l n  . under SBC the values of p and q may be selected 

so as to minimize 

2n
*

n t n
t 1

n l e k l (n)


 


  
  

The modified SBC is given by   

 
2n

*

n t*
t 1

SBC n l e 2k


 
 

  


 
Here Model I is  better than Model II and modified AIC < Model II. 

One may be quite confident in results, of both the    
* *

AIC and SBC select the same Time series 

model. If they select different models, then one need to proceed cautiously. 

 

7.  Conclusions  

Time series is becoming increasingly important both for the regulation of developed economics as 

well as for the planning of the economic development of underdeveloped countries.  In framing policy 

decisions, It is important to be able to predict  the value of the economic magnitudes.  Such forecasts 

will be enable the policy maker to judge whether it is necessary to take any measure in order to 

influence the relevant economic variables. In the present study, a goodness of fit criterion for ARMA 

(p,q) model and modified selection criteria for Time series models have been suggested. 
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