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Abstract. Binary operations are in general more difficult to implement when compared with 

unary operations. Normally any operation on a graph involves vertices or edges or both 

together. In general two graphs are involved in binary operation. Hajos construction is one 

such operation which involves vertices and edges with three operations. So two graphs with 

three operations on vertices and edges increases the difficulty in implanting it. Computation 

time increases when this operation is to be verified for all possible edge pairs between the two 

graphs. A matrix representation for this purpose would enable easy computation. In this paper 

we have provided a matrix method of verifying if two graphs are Hajos stable. 

1.  Introduction  

The eigenvalues of L ( G ) are called the Laplacian eigen values and denoted by 12 … n = 0. In 

particular 1 is called Laplacian spectral radius of G. In 2006, Lihua Feng et al. have studied the 

Laplacian spectral radius of trees on n vertices with the domination number , where n = k, k  2 is an 

integer. Also they determined the extremal trees that attained the minimal Laplacian spectral radius 

when  = 2, 3, 4 [1]. 

In [2], Dragan Stevanovic et al have characterized the graphs which achieved the maximum value of 

the spectral radius of the adjacency matrix in the sets of all graphs with a given domination number 

and graphs with no isolated vertices and a given domination number. Using the properties of graph 

theory and matrix, VenkataRao has provided a technique for material selection for given any 

engineering component [3]. Also, in [4] Venkata Rao et al have approached a new method using graph 

theory and matrix representation for selection of a rapid prototyping process.In [5], Kamal Kumar has 

found few bounds which are interrelated to the energy,domination number and rank of the incident 

matrix of G. In [6], Yang et al have provided a new method for recognizing the isomorphism of 

topological graph using incident matrices.  

In 2014, Kamal Kumar has defined set energy and discussed its properties. Also he studied some 

special class of graphs with its dominating set [7].  In [8], Xianya Geng et al. determined the first, 

second, third smallest Laplacian permanents of trees in the collection of all trees with n – vertices and 

with the domination number. Also they characterized the corresponding extremal graphs. The energy, 

E ( G ) of a simple graph G is defined to be the sum of the absolute values of the eigen value of G.  

In 2013, Rajesh Kanna et al have introduced minimum dominating energy of a graph. They 

computed minimum dominating energies of some class of graphs and provided the upper and lower 

bound for minimum dominating energies [9]. Using adjacency matrix, a new technique for generating 

a minimum weighted spanning tree was provided in [10]. Classification of domination dot stable 

graphs,  - stable graphs and graph domination graphs using matrices were discussed in [11].  
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In graph theory, a branch of mathematics, the Hajos construction is an operation on graphs named 

after GyorgyHajos in 1961. That may be used to construct any critical graph or any graph whose 

chromatic number is at least some given threshold [12]. 

In 1979, Catlin has provided a conjecture for Hajos graph coloring. Also he provided a 

counterexample to Hajos conjecture [13]. In [14], Brown et al. have proved that the Hajos construction 

of two amenable k – critical graphs need be amenable for any k 5. In 2001, an analogue of Hajos 

theorem for the circular chromatic number was proved by Xuding Zhu [16]. In this paper, we obtain a 

method for finding G1 and G2 are Hajos stable graph. 

2.  Materials and methods 

We consider only simple connected undirected graphs G = ( V, E ). The open neighborhood of vertex 

v V ( G ) is denoted by N ( v ) = { u  V (G) / ( u v )  E ( G ) } while its closed neighborhood is the 

set N [ v ] = N ( v )  { v }. We indicate that u is adjacent to v by writing u  v. 

A set of vertices D, in a graph G = ( V, E ) is a dominating set if every vertex of V – D is adjacent to 

some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is 

called a minimum dominating set. The cardinality of any minimum dominating set for G is called the 

domination number of G and it is denoted by  ( G ).  - set denotes a dominating set for G with 

minimum cardinality.  

A vertex v is said to be good if there is a  - set of G containing v. If there is no  - set of G 

containing v, then v is said to be bad vertex. A vertex v is said to be a, up vertex if  ( G – v ) > ( G ), 

down vertex if γ ( G – v ) < ( G ), level vertex if  ( G – v ) =  ( G ). A vertex v is said to be selfish in 

the  - set D, if v is needed only to dominate itself. A vertex v V – D is said to be p – dominated, if it 

is dominated by atleast p – vertices in D. A vertex v is said to be the private neighborhood of uin D 

which is defined as pn [ u, D ] = N ( u ) – N ( D − { u } ).  For details of on domination we refer to 

[16]. 

Hajos construction 
Let G1 and G2 be two graphs, ( u1 v1 ) be an edge of G1, and ( u2 v2 ) be an edge of G2. Then the Hajos 

construction forms a new graph H that combines the two graphs by merging  vertices  u1  and u2 into a 

single vertex u12, removing the two edges (u1 v1) and ( u2 v2 ), and adding a new edge ( v1 v2 ) [12]. 

Hajos stable graphs  

Let G1 and G2 be any two graphs. Let E ( G1 ) = { e11, e12, …, e1p } and E ( G2 ) = { e21, e22, …, e2q }. 

Let M = E ( G1 )  E ( G2 ) = { ( e1i e2j ) / e1i E ( G1 ), e2j E ( G2 ) }, that is M is the cartesian product 

between sets E ( G1 ) and E ( G2 ). Let | M | = k. Let H1, H2, …, H4k be the Hajos graphs generated by 

applying Hajos construction 4k times. If  ( Hi ) =  ( G1 ) +  ( G2 ), for all i = 1, 2, …, 4k, then G1 and 

G2 are said to be Hajos stable graphs [17]. 
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Figure 1. 

In Figure 1, H is the Hajos graph obtained from G1 and G2 using the edge pairs ( u3 u4 ) and ( v7  v8 ),        

 ( H ) =  ( G1 ) +  ( G2 ) = 4. Similarly  ( Hi ) =  ( G1 ) +  ( G2 ), for all i = 1, 2, …, 4k, implies G1 

and G2 are Hajos stable graphs. 

The results R1 and R2 were proved in [17]. 

R1. 

Let G1 and G2 be any two graphs. Let D1 and D2 be  - sets for G1 and G2 respectively. Let H be the 

Hajos graph. Then  ( H ) < ( G1 ) +  ( G2 ) if and only if either 

1. there is some ( ui vi )  Di such that ui vi, i = 1, 2,  or 

2. there is a selfish vertex in Gi, i = 1, 2, or 

3. both G1 and G2 have 2 – dominated vertices simultaneously together, or 

4. if pn [ ui, Di ] = vi in Gi, then Gj has 2 – dominated vertices, where i, j = 1, 2, i  j. 

R2       

Let G1 and G2 be any two graphs. Let D1 and D2 be  - sets for G1 and G2 respectively. Let H be the 

Hajos graph. Then  ( H ) > ( G1 ) +  ( G2 ) if and only if either 

1. if ui is an up vertex, uj, vi, vj are bad vertices, then 

a. vi is not a 2 – dominated vertex with respect to every Di in Gi and  

b. vj is not a good vertex in Cj – N [ uj] for all  - sets D3 for Cj – N [ uj ] such that | D3 | = | Dj 

|,  

where i, j = 1, 2, i  j,  or 

2. if ui are bad vertices, vi are up vertices, then uipn [vi, Di ] for all possible  - sets in Gi, i = 1, 

2. 

R3. 

If R1 and R2 are not satisfied, then G1 and G2 are said to be Hajos stable graphs. 

R4. 

If v is level vertex such that v is contained in every possible  – sets for G, then no  – set of G – v 

contains any vi N ( v ), i = 1, 2, …, k.   

Proof 

Let v V ( G ) be a level vertex in G and D be a  – set for G. Assume that v belongs to all possible  

– sets in G. Since v is a level vertex, we know that  ( G ) =  ( G – v ). Let D' be a  – set for G – v. 

Suppose that, there is some u  D', where u  N ( v ), implies D' is  – set for both G – v and G, ( 

since u dominates v in G and v  D ), implies as v belongs to all possible  – sets. 

3.  Results and Discussions 

An adjacency matrix of a graph G with n vertices that are assumed to be ordered from v1 to vn is 

defined by, 
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i j

ij n n

1, if thereexist an edge between v and v
A [a ]

0, otherwise.



 


 

Let G be a graph with | V ( G ) | = n. Let N denote a n n matrix [12], where 

ij n n th
ij

1 if i j
N [ n ]

a the ( i, j) entry of theadjacency matrix.



 



 

Let 
T

1 2 nx = x ( v ), x ( v  ), , x ( v  )  be a { 0, 1 } vector. If x is any dominating set, then Nxis 

greater than or equal to one [12 ]. 

Example 

 
Figure 2. 

 

 
that is, { v1, v2 }is a dominating set for G [18]. 

X and N [ vi ] denotes a dominating set and the number of non zero entries in any row of matrix N 

respectively.Nx is a column matrix. Every entry in Nx represents, the number of vertices dominating 

any vertex vi. A vertex viin V – D is said to be a private neighborhood with respect to D, if row vi 

entry in Nx is one. Similarly a vertex viin V – D is said to k – dominated with respect to x, if row vi 

entry in Nxis greater than or equal to two.  

We use the following notation for further discussion. 

Notation 

1. Consider a graph G with n vertices v1, v2, …, vn. Let  ( G ) = k. Consider all possible subsets 

with k vertices. Label them as S1, S2, …, Sp, where p = nCk. Let X = { x1, x2, …, xp }  be a set 

of { 0, 1 } vectors defined by xi =  xi ( v1 ), xi ( v2 ), …, xi ( vn ) 
T
,where  

i i

i i

1 if v S
x ( v )

0 otherwise.


 
  

2. Nxi is a column matrix. Let us denote this as vector, nxi = nxi ( v1 ), nxi ( v2 ), …, nxi ( vn ) 
T
.  

3. Let V = [ vij ] = [ x1, x2, …, xp ] be a vector of a matrix. Each xi, i =  1, 2, …, p in V, denotes a 

vector defined in Notation – 1. Find NV matrix. The matrix NV is a n  p matrix, every 

column in NV denotes vector nxi, ie., the columns represents vector nx1, nx2, …, nxp. 

4. Let S be the set of all vectors Nxi 1, where S  X , ie., NS  1. Let q denotes the number of 

elements in S, p q. 
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A. Determination of 2 – dominated vertices 

Consider matrices S and NS. A row in these two matrices represents vertices. A zero entry in vector xi 

represents a vertex in V1 – D1. If any vertex is 2 – dominated, then we know that atleast two vertices in 

D1 are adjacent to it. So, in the product matrix Nxi, the corresponding entry is atleast two. With this 

observation we compare a zero entry in xi =  xi ( v1 ), xi ( v2 ), …, xi ( vn ) 
T
 and its corresponding 

entry in nxi = nxi ( v1 ), nxi ( v2 ), …, nxi ( vn ) 
T
.  If for any xi ( vi ) = 0, nxi ( vi )  2, then vi is 2 – 

dominated. Let 1 11, 12 1k1
X { x x ,..., x }  V ( G1 ) be the set of 2 – dominated vertices for G1, 1  k1 

n. 

A similar discussion is true for graph G2 also. Let 1 11, 12 1k2
Y { y y ,..., y }  V ( G2 ) be the set of 2 – 

dominated vertices for G2, 1  k2 n. 

B. Determination of up vertices 

We know that an up vertex is contained in every possible  – sets for G [16]. This is not true only for 

up vertices, a vertex included in every  – set may be a level vertex also. 

Example 

 
Figure 3. 

In Figure 3, { v1, v4 }, { v6, v4 } are the only possible  – sets for G.  ( G ) =  ( G – v4 ) = 2, implies 

v4 is a level vertex and it is included in every  – set. Consider matrix S. If there is a row in S, with all 

non zero entries, then the corresponding vertex vi may or may not be an up vertex. So we need to 

verify if vertex vi is a level vertex. 

If v is a level vertex, we know that  ( G1 ) =  ( G1 – v ). Also we need to note that, this specific level 

vertex is contained in every  – set. By R4, we know that no  – set of G1 – v contains any vertex from 

N ( v ). With this note, we consider matrix NV. Consider row vi of matrix NV. If there is atleast one 

column such that row vi entry is zero and the remaining entries are non – zero, then this means that the 

corresponding column vector in matrix V dominates V – { vi }. Hence vertex vi is a level vertex. Else 

vi is an up vertex with respect to Gi. Let 2 21, 22 2k3
X { x x ,..., x }  V ( G1 ) be the set of up vertices 

for G1. 

A similar discussion is true for graph G2 also. Let 2 21, 22 2k4
Y { y x ,..., x }  V ( G2 ) be the set of up 

vertices for G2. 

C. Determination of bad edges 

Consider matrix S. If a row of S contains all zero entries, means that the corresponding vertex vi is not 

contained in any  – set, implies vi is a bad vertex. Let 3 31, 32 3k5
X { x x ,..., x }  V ( G1 ) be the set of 

bad vertices for G1. 

Consider the sub matrix
ij 5 5Y y k k    , where yij entry denotes the corresponding aij entry in 

matrix A, that is Y is a sub matrix of A with rows and columns representing bad vertices. If atleast one 

entry in matrix Y is non – zero, then there are two bad vertices adjacent to each other. Let 
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4 41, 42 4k6
X { e e ,..., e }  E ( G1 ) be the set of edges such that end vertices are in X3. Let

4i 3a 3bi i
e ( x x ) . 

A similar discussion is true for graph G2 also. Let 3 31, 32 3k7
Y { x x ,..., x } V ( G2 ) be the set of bad 

vertices for G2. 

4 41, 42 4k8
Y { e e ,..., e }  E ( G2 ) be the set of edges such that end vertices are in Y3. Let 

4i 3a 3bi i
e ( y y ) .  

D. Determination of u, v  D 

Consider matrices S and NS. A row in these two matrices represents vertices. A nonzero entry in 

vector xi represent a vertex in D1. If any vertex in D1 is adjacent to atleast another vertex in D1, then 

the corresponding entry is atleast two. So, in the product matrix Nxi, the corresponding entry is atleast 

two. With this observation we compare a nonzero entry in xi =  xi ( v1 ), xi ( v2 ), …, xi ( vn ) 
T
 and its 

corresponding entry in nxi = nxi ( v1 ), nxi ( v2 ), …, nxi ( vn ) 
T
.  If for any xi ( vi ) = 1, nxi ( vi )  2, 

then there is some x, y  D1 such that x  y. Let 5 51, 52 5k9
X { x x ,..., x }  V ( G1 ) be the set of 

vertices in D1 such that every vertex in X5 is adjacent to atleast one more vertex in D1. 

A similar discussion is true for graph G2 also. Let 5 51, 52 5k10
Y { y y ,..., y }  V ( G2 ) be the set of 

vertices in D2 such that every vertex in Y5 is adjacent to atleast one more vertex in D2. 

E. Determination of single private neighbors of D 

Let G1 be a graph such that every vertex in V1 – D1 are private neighbors. We now redefine vector xi 

as follows.  

Let yi = yi ( v1 ), yi ( v2 ), …, yi ( vn )  be { 0, 1 } vector such that  

i i

i i

0 if v S
y ( v )

1 otherwise.


 
  

With this new definition of yi, we compare zero entry in yi and its corresponding entry in nyi. If for 

any yi ( vi ) = 0, nyi ( vi )  2, then there is atleast two vertices in V1 – D1 adjacent to vi. 

Create a new matrix S1, where 
th

ij

1 1ij n q th

ij

1 if s entry of matrix S is equal to zero
S [s ]

0 if s entry of matrix S is equal to one.



  

  
In product NS1, for any zero entry in column yi, the corresponding entry nyi ( vi ) = 1, then the vertex 

vi in G1 dominates only one vertex. Since in G1 every vertex in V1 – D1 are private neighbors, implies 

G1 has single private neighbor. Let 6 61, 62 6k11
X { x x ,..., x }  V ( G1 ) be the set of single private 

neighbors for G1.  

A similar discussion is true for graph G2 also. Let 6 61, 62 6k12
Y { y y ,..., y }  V ( G2 ) be the set of 

single private neighbors for G2. 

Step 1 

If X5, then every vertex in X5 is adjacent to one more vertex in D1 or 

If Y5, then every vertex in Y5 is adjacent to one more vertex in D2.  

This implies, G1 and G2 are not Hajos stable graphs. Else continue to step 3. 

Step 2 

If u is a selfish vertex, then we know that, there is one  – set such that u, x  D1, u  x or v, y  D2, v 

 y. So when condition 1 is verified, condition 2 of R1 is also verified. This implies, G1 and G2 are not 

Hajos stable graphs. Else continue to step 3. 

Step 3 

If X1, Y1, then both G1 and G2 have 2 – dominated vertices simultaneously together. This implies, 

G1 and G2 are not Hajos stable graphs. Else continue to step 4. 

Step 4 
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In this step we use vector Notation in E. From Step 3, we know that both G1 and G2 do not have 2 – 

dominated vertices simultaneously, that is either X1 =  or Y1 = . Assume that X1 = . If X6, Y1, 

then G1 has a single private neighbor and G2 has 2 – dominated vertices simultaneously together, 

implies G1 and G2 are not Hajos stable graphs. Similarly if X1, Y6, then G1 and G2 are not Hajos 

stable graphs. Else if  

i. X2 = Y2 = , G1 and G2 are Hajos stable graphs. 

ii.  if either  X2 or Y2 continue to step 5. 

Step 5 

If X4 =  or Y4 = , then continue to step 6. Else proceed as follows. 

Let W2i = N ( x2i ) = { w1, w2, …, wji }, i = 1, 2, …, k3 be the open neighbors of the up vertices in set 

X2. Let R2i = W2i X1. If  

2i

2i

W then continue to step 6
R

else continue further.



 or 

Let Z2i = N ( y2i ) = { z1, z2, …, zji }, i = 1, 2, …, k4 be the open neighbors of the up vertices in set Y2. 

Let F2i = Z2i Y1. If  

2i

2i

Z then continue to step 6
F

else continue further .



  

 If R2i W2i and F2i Z2i, we proceed as follows.  

Let X7 X4, be the set of all bad vertices of X4 such that 3ai
x is a good vertex in A2 – N [ 3bi

x ] and 

vice – versa. If | X4 | = | X7 |, then continue to step 6, else G1 and G2 are not Hajos stable graphs. 

A similar discussion is true for G2 also. Let Y7 Y4, be the set of all bad vertices of Y4 such that 

3ai
y  is a good vertex in A1 – N [ 3bi

y ] and vice – versa. If | Y4 | = | Y7 |, then continue to step 6, else G1 

and G2 are not Hajos stable graphs. 

Step 6 

If either | R2i | = | W2i | or | F2i | = | Z2i |, then G1 and G2 are Hajos stable graphs. Else G1 and G2 are not 

Hajos stable graphs.  

Example  

Consider the graph G1 in Fig. 1, 

0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0

A ; N0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1

  
  
  
  
  

   
  
  
 
 
   










 
 
   

 ( G1 ) = 2. consider { S1, S2, …,S36 } = { { v1, v2 }, { v1, v3}, { v1, v4 }, { v1, v5 }, { v1, v6 }, { v1, v7 }, 

{ v1, v8 }, { v1, v9 }, { v2, v3 }, { v2, v4 }, { v2, v5 }, { v2, v6 }, { v2, v7 }, { v2, v8 }, {v2, v9 },{ v3, v4 }, { 

v3, v5 }, { v3, v6 },   { v3, v7 }, { v3, v8 }, { v3, v9 }, { v4, v5 }, { v4, v6 }, { v4, v7 }, { v4, v8 }, { v4, v9 }, { 

v5, v6 }, { v5, v7 }, { v5, v8 }, { v5, v9 }, { v6, v7 }, { v6, v8 }, { v6, v9 }, { v7, v8}, { v7, v9 }, { v8, v9 } }. 
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1 1 1 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

0 0 1 1 1 1 0 0 0

NV 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 1 1

 
 
 
 
 

  
 
 
 
 
    

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

 
 
 
 
 
 
 
 
 
 
    

2 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 2 0 0 0 0 1 0 0 0 1 1

2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 2 2 2 1 1 2 2 1 1 1 2 1 1 1 1

NV 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 2 2 1 1 1 2 1 1 1 1

0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 2 2 2 2 1 2 2 2 1 2

0 0 0 0 1 1 1 1 0 0 0



0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

1 1 0 0 0

2 1 2 1 1

0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 2 2 1 2 1 1

1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 2 2 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 2

 
 
 
 
 
 
 
 
 
 
    

 

 

 

 

 

 

 

 

 

 

 

Consider the graph G2 in Fig. 1, 

0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0

1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1
A ; N

0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0

0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0

0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1

   
   
   
   
    
   
   
   
   
     

 

1 1

0 1

0 1

0 1

S ; NS0 1

1 1

0 1

0 1

0 1

   
   
   
   
   

    
   
   
   
   
      
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 ( G2 ) = 2. Consider { S1, S2, …,S28 } = { { v1, v2 }, { v1, v3}, { v1, v4 }, { v1, v5 }, { v1, v6 }, { v1, v7 }, 

{ v1, v8 }, { v2, v3 }, { v2, v4 }, { v2, v5 }, { v2, v6 }, { v2, v7 }, { v2, v8 }, { v3, v4 }, { v3, v5 }, { v3, v6 }, { 

v3, v7 }, { v3, v8 },  { v4, v5 }, { v4, v6 }, { v4, v7 }, { v4, v8 },  { v5, v6 }, { v5, v7 }, { v5, v8 },  { v6, v7 }, { 

v6, v8 },  { v7, v8} } . 

1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0
NV

0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

 
 
 
 
 
 
 
 
 
 

0 0

0 0

0 0

0 0

1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

 
 
 
 
 
 
 
 
 
 

2 2 0 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

2 2 0 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

2 2 0 0 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 0 1 1 0 1 1 1 2

0 0 0 2 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
NV

0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 2 1 1 2 1 1 2 0

0 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 2 1 1 2 1 1 2 0

0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 2 1 1 2 2 1 2 2 0 1 1 2 2

0



1 0 1 1 0 0 0 1 1 1 0 0 1 1 2 1 1 2 2 1 2 2 0 1 1 2 2

 
 
 
 
 
 
 
 
 
   

1 0 0 0 0 1 1 1 1 1

0 1 0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1
S ; NS

0 0 0 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1

0 0 0 1 0 1 1 2 1 1

0 0 0 0 1 1 1 2 1 1

   
   
   
   
    
   
   
   
   
     

A. Determination of 2 – dominated vertices 

For graph G1 

 

1 1 1 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

0 0 1 1 1 1 0 0 0

NS 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 1 1

0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 1

1

1

1

1

0

0

0

0

0

0 11

1

10

     
     
     
     
     

      
     
     
     
     
            

Consider NS, for all 0 entry in x5, the entries in the corresponding position of Nx5 1, implies X1 = . 

For graph G2 

1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

1 1 1 0 0 0 1 1 1 1 1 0

0

0

0 1 1 1 1 1

0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
NS

0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1

0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1

0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 0 0 1

2

1 121

     
    
    
    
     
    
    
    
    
     









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In NS, for all zero entries in x14, the entries in the corresponding position of Nx14 2, implies Y1 = { 

7, 8 }. 

B. Determination of up vertices 

For graph G1,  ( G1 ) = { 1, 6 }. We consider matrix NV. Consider row vi, i = 1, 6 of matrix NV. 

There exist no column in NV such that row vi, i = 1, 6 entry is zero and the remaining entries are non – 

zero. Hence vertex vi is an up vertex, i = 1, 6, implies X2 = { 1, 6 }. 

Similar discussion for G2, implies Y2 = . 

C. Determination of bad edges 
Consider the graph G1.  

1

2 0 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 0 1 0 1 0 0 0

S ; Y 5 0 0 1 0 0 0 0

1 7 0 0 0 0 0 1 0

8 0 0 0 0 1 0 1

9 0 0 0 0

0

0

0

0

0

0 10

0

0

 
   
   
   
   

    
   
   
   

  
    

From S and Y, X3 = { 2, 3, 4, 5, 7, 8, 9 } and X4 = { ( 2  3 ), ( 3 4 ), ( 4 5 ), ( 7  8 ), ( 8  9 ) }. 

Consider the graph G2. 

0 0 0 0 0

0 0

0 0 0 0 1

0 0 0 1 0

1 1 1 0 0

0 0 1 1 1 7 0 1
S ; Y

0 1 0 0 0 8 1 0

1 0

0 0 0

0 0 0

 
 
 
 

        
 
 
 
   

From S and Y, Y3 = { 7, 8 } and Y4 = { ( 7 8 ) }. 

D. Determination of u, v  D 

Consider the graph G1.  

1 1 1 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0 1

0 0 1 1 1 1 0 0 0 0 1

NS 0 0 0 1 1 1 0 0 0 0 1

0 0 0 1 1 1 1 1 0

0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 0 1 1 1 1 0 1

1 0 0 0 0 0

1

0 1 1 0

1

1

1

1

     
     
     
     
     

      
     
     
     
     
            

Consider NS, for all non zero entry in x5, the entry in the corresponding position of Nx5 1, implies X5 

= . 

Consider the graph G2.  
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1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 0 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 1 0 0 1 1
NS

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 2 1 1

0 0 1 1 0 0

1

1

1 1 1

1

1

1 1 1

1 1 0 0 0 0 0 1 1 2 1 1

1 1 11 1

11

1

1

1

     
    
    
    
     
    
    
    
    
     










 
Consider NS, for all non zero entry in xi, the entry in the corresponding position of Nxi 1, where i = 

5, 11, 16, 17, implies Y5 = . 

E. Determination of single private neighbors of D 

Consider the graph G1. 

1

1 1 1 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 1 2

0 0 1 1 1 1 0 0 0 1 2

NS 0 0 0 1 1 1 0 0 0 1 1

0 0 0 1 1 1 1 1 0

0 0 0 0 0 1 1 1 0 1 1

0 0 0 0 0 1 1 1 1 1 2

1 0 0 0 0 0

3

0 1 1 1

0

0

1

4

     
     
     
     
     

      
     
     
     
     
            

In NS1, for every zero entry in x5, the entry in the corresponding position of Nx5 1, implies X6 = . 

Consider the graph G2. 

1 1 1 0 0 0 0 0 1 1 1 1 2 2 2 1

1 1 1 0 0 0 0 0 1 1 1 1 2 2 2 2

1 1 1 0 0 0 1 1 1 1 4 4

0 0 0 1 1 1 1 1 1 1 4 4
NS

0 0 0 1 1 1 0 0 1 1 1 1 2 2 2 2

0 0 0 1 1 1 0 0 1 1 1 1 2 2 2 2

0 0 1 1 0 0 1 1 1 1 1 1 1 3 3 2 3 3

0 0 1 1 0 0

0 2

0 2

0 0 0 4 4 4

1 1 1 1 1 1 1 3 3 2 3 3

0 0 0 4 4 4

0 2

0 2

     
    
    
    
     
    
    
    
    
     










 
Consider NS, for all non zero entry in xi, the entry in the corresponding position of Nxi 1, where i = 

5, 11, 16, 17, implies Y6 = . 

Step 1 

X5 =   and Y5 = , implies there is no ( ui, vi )  Di such that ui vi, i = 1, 2. 

Step 2 

There is no selfish vertex in Gi, i = 1, 2. 

Step 3 

X1 = , Y1, implies both G1 and G2 do not have 2 – dominated vertices simultaneously together. 

Step 4 

Y1 and  X6 = . G2 has no 2 – dominated vertices and pn [ u1, D1 ] = { v1 } in G1.  

Step 5 

Y7 = ( 7  8 ), | Y4 | = | Y7 |. u1 is an up vertex in G1, vj is a bad vertex in G2 and vj is a good vertex in  

A – N [ vj ], j = 7, 8 in G2. 

Step 6 

X2  , Y2 = . Both G1 and G2 do not have up vertices simultaneously together. 

Hence G1 and G2 are Hajos stable graphs. 
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