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Abstract. Making use of certain linear operator, we define a new subclass of uniformly convex
functions with negative coefficients and obtain coefficient estimates, extreme points, closure

and inclusion theorems and the radii of star likeness and convexity for the new subclass.
Furthermore, results partial sums are discussed.

1.Introduction
Let A denote the class of functions of the form

f(z):z+ianz” (1.1)
n=2

which are analytic and univalent in the open disc E = {Z AS C|z| < 1}. Also denote by T the subclass
of A consisting of functions of the form

f(z)=2->a,2".(a,>0) (1.2)
n=2
Following Goodman [2 and 3], Ronning [4 and 5] introduced and studied the following sub-classes

()A function f € A is said to be in the class Sp (05) uniformly starlike functions if it satisfies the

condition.
RE{L(Z)—Q}> L(Z)—J.‘,ZGE, 1.3
f(2)

f(2)
—l1<a<l.
(i) A function f e A is said to be in the class UCV (), uniformly convex functions if it satisfies the

condition.
Re{l+2f (Z)—a}> #(2)

t'(2) t'(2)

,ZeE, (1.4)
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and —l<a<1.
Indeed it follows from (1.3) and (1.4) that

f eUCV(a)@Zf’eSp(a). (1.5)

For functions f e A given by (1.1) and g(z)e A given by g =17 +Zb 2" we define the

n=2
Hadamard product (or Convolution) of fand g by

(f*g)z)= Z+Zab2n,Z€E (L.6)

Let ¢(a;c;z) be the mcomplete beta function defined by

#la;c;z)= z+i(a)nl 2".c20,-1-2,.. (1.7)

n-1

Where (/1)“ is the Pochhammer symbol defined interms of the Gamma functions, by

(A+n 1 n=0
(), = —(r(;) ) {,1 (A+1)A+2).(A+n-1)ne N} (18)
Further, for f e A

L(a,c)f(z)=¢(a;c;2)* :z+ni

(1.9)

where L(a, c)) is called Carlson — Shaffer operator [1] and the operator * stands for the hadamard
product (or convolution product) of two power series is given by (1.6). We notice that

L(a,a)f(z)= f(z), L(21)f(z)=zf"(2)

Now, we define a Generalized carson — Shaffer operator L(a;c:y) by
L(a;c:»)f(z)=¢(a;c;2)*D, f(z) (1.10)

For a function f € A where
D, f(z)=@0-y»)f(z)+y zf(zn>=0z € E)

So, we have

L(a;c;r)f(z)= z—g[u(n—l)r]((i;"i az" (1.11)

It is easy to observe that for y =0, we get the Carlson- Shaffer linear operator [1].
For -1<a <l welets (a, ) be the subclass of functions of the form (1.1) and
satisfying the analytic criterion.
z(L(aciy) f(z)) Z(L(a,C;J/)f(Z))

R _ _
¢ L(a,c;y) “r” L(a,c;y)

where (L(a,c;y)f (z) we also let (1.11) we also let
TS(et,7)=S(a, )T
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By suitably specializing the values of (a) and (c), the class S(«, ) can reduces to the class studied

earlier by Ronning [5,6]. Also choosing =0 and »=1 the class coincides with the class studied in
[11] and [12] respectively.

2. Main Results
Theorem 2.1. Afunction f(z) of the form (1.1)isinS (e, y) if

Z[zn (a+1)] [1+(n- 1y] nl|a|_1 a (2.1)

n -1
-1<a<l,y=0
Proof. It suffices to show that

! !

(Lacn) 1) | . |2(Lacn)f(2)

L(a,c;y)f(Z) L(a,C;}/)f(z) 1'<1-a
We have
(Lacn)f(2) | o lz(L@en)f(2)
L(ac.y)f(2) L(ac.7)f(z)
L, [HLEen @)
- L(a,c,7) f(z)

2z<n D[+ (n- w] -1|a|
1—;[“ (n-1) y}gc))nj|an|

This last expression is bounded above by Ql-e)if

Z[zn (a+1)] [1+(n- 1y] nl|a|_1 a

nl

and this completes the proof.
Theorem 2.2. A necessary and sufficient condition for f(z) of the form (1.2) to be in the class

TS(a 7), -1<a <1, y>0 isthat

[2n (a+1)] [1+(n-1) 7/] nla <l-a (2.2)

( )n -1
The result is sharp
Proof: In view of Theorem 2.1, we need only to prove the necessity If f(z)eTS(«,y) and z is

real then
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2n[1+ (n-1) ]EZ;:_I 2” 1)[1+(n- 17/]( )—1az

1- ni[u (n-1) ]Ea;“ 1- Z[1+ (n- 1y] nlaz

Letting Z—1 along the real axis we obtain the desired mequallty

Zzn (a+1)[1+(n- 17]()‘1a_1 a
-1

Corollary 2.1 If f (z) eTS (e, ) then

(1-a)

a, < (a) forn>2 (2.3)
[2n—(a+1)] [1+(n-1)y] (C)n-l
n-1
The result is sharp for the function
f(z)=z- (1-2) 2"'n>2 (2.4)

[2n—(a+1)] [1+(n—1);/](a”‘1
If » =0 we get the following result of [1]

Corollary 2.2. If f(z)eTS(e, ) then
(1-2)
,N>2

a, < (2.5)
2n—(ar+1)] s
(C)n—l
The result is sharp for the function
f(z)=z2- (-2 2", n>2 (2.6)

on-(a+1)] P

Theorem 2.3. Let f(z) defined by (1.2) and g(z) defined

9(z)=12 —anz“ be in the class TS (e, ») - Then the function h(z) defined by
n=2

h(z)=(@-2)f(z)+ 2 9(2) an

where (, = (1—/1)an +1b,,0< /1 <1l isalsointheclass TS (e, )

Theorem 2.4. Let f,(z)=2z and



14th ICSET-2017 IOP Publishing
IOP Conlf. Series: Materials Science and Engineering 263 (2017) 042157 doi:10.1088/1757-899X/263/4/042157

- (1-a) (Cn—l)
f(2) [2n—(a+1)] [1+(n-1)7](a),,

Forn=2,3,4 ...
Then f(z)eTS(a,y) ifandonlyit f(z) can be expressed in the form

z" (2.7)

=>'2, f,(z)where 4, >0and Y 4, =1
n=1
The proof of the Theorem 2.4, follows on line similar to the proof of the theorem on extreme points
given in silverman [9].

We prove the following theorem by defining fj (Z)(J =12..... m) of the form

Zanjz for a,;20,2€E (2.8)

Theorem 2.5 Let the function fj(Z)(j :1,2...m) defined by (2.8) be in the class TS (aj,y)
(j =1, 2,.....m) respectively. Then the function h(z) defined by

z)= z—ii(ZaﬂjJZ”

m=2\=

is in the class TS (e, y)
min

where ¢ = | {aj} where-1<q; <1

1<jJ<m
Proof:
Since fj (Z) eTS (aj ; 7/), J= (1, 2,3..... m) TS (051- , r) by applying theorem 2.2 to (2.8) we observe
that

=g[2n—(a+l:| [1+(n-1)7] :;” (%gan,j]
8[Zeren] o s,
1
Saé(l_aj)
<(l-a)

which in view of Theorem 2.2 again implies that h(z) e TS («, y)
Hence the theorem follows

Theorem 2.6 Let the function f(z) defined by (1.2) be in the class TS («, y)-

Then f(z)close to convex of order 5(0< & <1) in |z <, where
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(1-0)[2n—(a+1)] [1+(n —1)y](a)“l -
inf

_ (C)n—l 29
"2 n(l-a) @9)

The result is sharp, with the extremal function f(z) given by (2.4)

Proof: We must show that
f'(z)-1<1-6 forlz|<r, (2.10)
where r, is given by (2.9), Indeed we have

F(2)-1<Ynaz"
n=2

Thus
f(z)-1<1-6
if ni: (%) a,|{" <1 (2.11)

Using the fact, that f e TS («, ) ifand only if

2[2” (e +1)} [1+(n—1)7] ((2))n:l

l-a

a, <1

n

we can say (2.11) is true if

(1_”5] 2 <[2n—(a+1)] [1+(n-1);] 2‘3

l-«o
that is, if
(a),,] "
(1-08)[2n—(ar+1)] [1+(n_1)y](c)n1
/< _ o n>2
n(l a)

This completes the proof of Theorem

Theorem 2.7: Let the function f(z) defined by (1.2) be in the class TS (e, )
Then £(z) is strarlike of order 5(0< & <1)in [2|<T, where
inf [(1-5) [2n—(a+1)] [1+(n-1)7](a) | s
n>2 (n-6) (1-) (c) |
The result is sharp with the extermal function f(z) given by (2.4)

2
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Proof: Given f < A and f is starlike of order o , we have
Zf—(z)—l‘ <1-¢6 (2.12)

f(z)

For the left hand side of (2.12) we have

0

|zf’(z)_4 ;(n—l)an|z|n_l
1@ 1-3 7"

The last expression is less than 1-0 if

y gan|z|"_l <1
n=2 1-¢6

Using the fact that f e TS (e, ) ifandonly

i[Zn —(a+1)] [1+(n-1)7/:|%an <1
n=2 n—:
we can say (2.12) is true if 1

n—8) pi_ [2n—(a+l)] 1+(n—1)7} (a) ,
1_5 - 1_a (C)n—l
or equivalently,

2|< {(1—5)[2n —(a +l)] [(l+ n_1)7,] (@), }%1

i

(n=6) (L-a) (©).s

which yields the starliekness of the family

Using the fact that f(z) is convex if and only if z f'(z) is stalike, we get the following corollary.

Corollary 2.3: Let the function f(z) defined by (1.2)
be in the class TS (a, 7). Then f(z) is convex of order & (0< & <1)in|z| < r, where

% %—1
(),

. (1-s)[2n—(a+1)] [1+(n-1)7]

5 Tn>2 n(n-5) (1-a)

The result is sharp with external function f(z) given by (2.4).

3. Partial Sums
Following the earlier works by Silverman [9] and Silvia [10] on partial sums of analytic functions.
We consider in this section partial sums of functions in this class TS («, ) and obtain sharp lower

bounds for the ratios of real part of f(z) to fk(Z) and f'(z) to fk,(z)
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Theorem 3.1: Let f (z)eTS(a,y) be giving by (1.1) and
define the partial sums f(z) and f, (Z) by f(z)=z and

k
f(z)=2+>a,2"(keN/1)
n=2
Suppose also that

idn|an|£l
n=2

Where dn — w
(1-a)

Then f TS (a,y) Further more,

Re{ f(Z)}>1— 1 JcEkeN

f(2)
and

Re fk (Z) > dk+l
f(z)] 1+d,,

}[ﬂ(n—l)ﬂ%

Proof: For the coefficients dn given by (3.2) it is not difficult to verify that

d.,>d >1

Therefore we have

Zla +d.a Y o |<Zd 3] <1
n=k+1

by using the hypothesis (3 2) By setting

0,(2)= dk+1{ :k((zz)) _[1_ dk1+1J}

S n-1
d k+1 z a‘n z

1+Za z"

and applylng (3.6), we find that

| dk+1 Z|a |

|glz < n=k+1
% 225 a0, S
n=k+1
<lzeE

which ready yields the assertion (3.3) of Theorem 3.1. In order to see that

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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k+1

f(z)=z2+2 (3.9)
k+1
gives sharp result, we observe that for zZ = rei% that
k
f(z) —1+ 2 —>1—ias z->1
fi (Z) k+1 k+1 Similarly, if we take
f(z) d
—(1 k _ k+1
0.(0)-(ura, f 8 o |
(1+dn+l) ianzn_l
—1— _ n=k+1 (3.10)
1+> a,z"!
n=2
And making use of (3.6) we can deduce that
(1+ dk+1) Z|a |
|gz z |_ n=k-+1 (311)
9:(2)+1 5 2z|a ~a-d,.)Sa,

n=k+1

which leads is immediately to the assertion (3.4) of Theorem 3.1

The bound in (3.4) is sharp for eachk € N with the extermal function f(z) given by (3.9).
The proof of the Theorem 3.1. is thus complete.

Theorem 3.2:If f(z)of the form (1.1) satisfies the condition (2.1) then

Re{@} 21—k—+1 (3.12)
fk (Z) dk+l

Proof:

By setting

o dii

k” Z na,z" +Zna z"

n k+1
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Now

dk+ <
92)-1]_ kTin%”'a"'
9011 52 - 9ot S

n=k+1

g(2)-1
‘g(z)+1Sl
k
na,|+—% » 'nla |<1
2" +1n_ZMI |

k
Since the left hand side of (4.14) is bounded above by Zdn|an| if
n=2

and the proof is complete. The result is sharp for the extremal function f(z)=z+

zk:d (d,-n)a |+Zd k+1n|a|>0
n=2 n=k+1

k+1
z

k+1

Theorem 3.3: If f(z) of the form (1.1) satisfies the condition (2.1) then

-

e

~k+1+d,,

Proof: By setting

9(z)=[(k +1)+dk+l]{f'(2) Ay }

f'(z) k+1+d,,

d o
14—k na z"*
:1_( k +1)Zn=k+1 n

k _
1+ naz"

and making use of (3.15), we deduce that

d,
o(2)-1/_ (“k ) 2
1~ ey or
|g(Z)+ | 2_22:=2n|a”|_(l+ k:3j2n=k+ln|an|

<1

which leads us immediately to the assertion of the Theorem 3.3
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