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Abstract. Solar energy can be considered as the most technological and economical  type of 
renewable energy. The purpose of the paper is to increase the efficiency of solar energy 
utilization on the basis of the mathematical simulation of the solar collector. A mathematical 
model of the radiant heat transfer vacuum solar collector is clarified. The model was based on 
the process of radiative heat transfer between glass and copper walls with the defined blackness 
degrees. A mathematical model of the ether phase transition point is developed. The 
dependence of the reservoir walls temperature change on the ambient temperature over time is 
obtained. The results of the paper can be useful for the development of prospective sources 
using solar energy. 

1.  Introduction 
In the past few decades, renewable energy sources are promising from the point of view of 
contribution to the global energy balance due to the fact that ensures replacement of depleting fossil 
fuel and is the ecological improvement of the environment [1-4]. 

The solar energy can be considered currently as the most technologically available and 
economically viable form of renewable energy. The use of it in order to provide heat supply objects 
should not be considered only for areas with a warm climate and sufficient number of cloudless days 
of sunshine and the amount of solar radiation [5-9]. 

The aim of this paper is to investigate the possibilities of increase of efficiency of utilization of 
solar energy on the basis of mathematical modeling. 

To achieve this aim it was necessary to carry out the following problems: 
1. To give the analysis of solar heating systems. 
2. To give the recommendations for the refinement of a mathematical model of a solar collector. 
3. To carry out computational experiment. 

2.  The analysis of solar heating systems 
The systems of  solar heating for intensification of the processes of radiation are divided into active 
and passive[10-15]. In passive systems as devices for collecting solar radiation, converting it into 
thermal energy and storage  the building envelope is used [16-20]. This method of utilization of 
radiation, typically include large windows on the southern facades of buildings and the accumulation 
of excess heat in these cases occurs in the arrays of internal walls and floors. Taking into account the 
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large glazing of buildings to reduce heat loss at night, cold season and heat gain during the summer 
season, translucent fences are equipped with movable shielding insulating devices [21]. 

To improve the efficiency of the passive solar heating system we can arrange additional translucent 
fencing of the southern wall of the building and location of openings for air circulation at floor level 
and ceiling. When covering dark paint compositions of the concrete wall of the storage efficiency of 
the disposal process radiation can exceed 40 %. 

The passive solar heating economically viable in resourced areas characterized by moderate 
temperatures and ample sunshine during the cold period of the year. Along with the high heat storage 
capacity of the southern walls in the case of passive heating of the outer fence needs to have a thermal 
insulation, including movable shielding, collectively providing energy efficient buildings. 

Distinctive features of active solar heating systems is the availability of technical devices for the 
capture and transformation of radiation, such as collectors, heat exchangers, accumulators and 
automation[10]. 

Active solar heating is classified under the following headings: 
 - achieve thermal regimes: high and low temperature; 
 - intended for heating, hot water and cooling systems; 
 - time of operation: seasonal and year-round; 
 - coolant: air and liquid; 
 - according to the method of coolant circulation: natural (gravity) and forced over by the 

action of the fan or pump; 
 - according to the method of heat transfer utilized in the heating system and hot water: single-

loop (without intermediate heat exchanger) and ghosting. 
 - for the duration of energy storage: short-term and seasonal; 
 - in physical-chemical processes occurring in batteries, they are divided into: capacitive (using 

the heat capacity of a substance without changing the state of aggregation), the phase 
transition based on the absorption or release of heat during the flow of reversible chemical and 
photochemical reactions; 

The efficiency of active systems significantly exceeds the passive, but her performance in the 
aggregate affect the efficiency of the individual components and devices, however, are the defining 
characteristics of the collectors. Solar collector device for collecting solar thermal energy (solar power 
plant), portable visible light and near infrared radiation. 

Solar collectors are by far the most efficient devices using energy from the sun. For example, 
efficiency of photovoltaic panels is only about 14-18%, whereas solar collectors effectively used in 
approximately 80-95% of absorbed solar energy.  

One kind of solar collector is a solar collector [11,12,16]. Design of the vacuum collector are 
similar to a thermos: one tube inserted into another with a larger diameter. Between them, the vacuum 
is perfect insulation. For year-round systems the collectors are vacuum tube with built-in timetrouble 
(heat pipes). Thermochrome is a closed copper tube with a small content of low-boiling liquid. Under 
the influence of heat, the liquid evaporates and collects heat from the vacuum tube. Vapors rise into 
the upper part of the tip, where congenerous and transfer heat to the coolant of the primary circuit 
water or antifreeze heating circuit. The condensate drains down and everything repeats again.  

This type of collector is primarily aimed at reducing heat loss through the vacuum between the 
body heat and the outer shell of the collector. Looks like this manifold as a set of glass tubes from 
which the oxygen had been sucked, and inside the iron tube black color which actually heats up. This 
design allows you to save up to 95% of the thermal energy received from the sun. The water can be 
heating up to 270—300 C. 
 

3.  Simulation of radiative heat transfer between two parallel surfaces 
Let’s consider the process of radiative heat transfer between glass and copper walls with a degree of 
blackness σ1 and σ2 and temperature values of the walls T1 and Т2 (Figure1). 
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Figure 1. T1, Т2 is the temperature of the first and 
second walls, respectively; σ1 and σ2 - degree of 
blackness of the first and second walls, 
respectively; W is the density of radiation from 
one wall to another. 

 
According to the Stefan-Boltzmann law the radiation density from a glass plate is determined by 

the formula: 

 41
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Likewise, from the copper plate: 
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The specific heat flow from one plate to another is determined by the formula: 

 1 2Q Q Q   (3) 

If we substitute the formulas (1) and (2) to (3), specific heat flow from one plate to another is 
calculated as: 

 4 41 2
0 (( ) ( ) )

100 100x

T T
Q C     (4) 

where 

 
0

1 2 1 2 0

1 1
1 1 1 1 1

1

x
x xa

C
С

C
С С С

nd

 

  
   

 (5) 

As a result of heat flow can be determined on the basis of the formula: 
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where F is the area of the plates, and t is time. You can write other way  
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
 (7) 

where glassC  - specific heat capacity of glass; cuC  - specific heat capacity of copper; liqC  - specific 

heat of the liquid. On the basis of formulas (6) and (7) we come to equality: 

 4 41 2 1
0 (( ) ( ) ) ( )

100 100n glass cu liq

T T dT
C F t C C C m

dt
           (8) 

4.  A mathematical model of radiant heat exchange in a solar collector 
Let’s consider a solar collector (Figure 2): length 1850 mm; width 950 mm; height 125 mm; area 
F=1,76 m2, weight 37 kg, glassC =0,670 kJ/(kg•K) is specific heat capacity of glass, cuC =0,385 
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kJ/(kg•K) is specific heat capacity of copper, liqC =3.34 kJ/(kg•K) is specific heat of air, σ1=0,937( 

degree of black glass), σ2=0,057(degree of blackness of the copper), С0=5,67 W/m2 K4
. 

After substitution of the initial data in (5), we get: 0,058n  . 

Substituting into the equality (8) the original data we get: 10 4 41
1 213,7 10 ( )

dT
t T T

dt
    

 

Figure 2. The element of vacuum tube in the 
solar collector, T2 is the temperature of the 
external air; T1 is the temperature in the inner 
region of the glass tube. 

 
Spend integration of the obtained expressions 
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We consider the left part of this equality. After decomposing a fraction into factors based on the 
method of undetermined coefficients, we obtain: 
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We substitute (10) into (9) and get 
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After substituting (12) and (13) into (11) we get the equality: 
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In the end: 2
2( ) 54,8f T t T C   . 

There are three solutions: 2T T , 2T T , 2T T .  
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Case 1:   , i.e.  1 0
dT

dt
 .  Case 2: 2T T  – cooling. Case 3: 2T T  – heating 

We can imagine this graphically (Figute 3): 

 

Figure 3. A graph of the temperature in the 
interior of the glass tube T2 of the solar collector 
from the ambient air temperature T1 over time 

 

5.  A mathematical model of the phase transition point of the ether 
The heat flow required for the phase transition of the ether is determined by the formula 
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where [22]  = 11 W/m2К; Тс = 467 К; 0,937n  .  

– transfer coefficient of the substance; Тс – critical temperature. 

Integrating and substituting the original data will get the addiction  : 

 4 22(114,8594 0,24149045 ( ) )
100

T
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We have 3 solutions: cT T – liquid; cT T  – phase transition; cT T  – gas. 
The intensity of solar collectors depends on the ambient temperature. The efficiency of solar 

systems largely depends on their correct installation. The size of the angle relative to the horizon 
depends on the work of the collector. The common tilt angle of the collector mounting location is the 
corresponding value of latitude. It is not recommended to set the collector tilt angle smaller than 20°, 
since the heat pipes operate most efficiently in the range of from 20° to 70°. It is acceptable to angle of 
±10° of latitude, which is not observed a significant reduction in system performance. Corner is below 
the latitude of 15° increases the heat in the summer, while the increase in the angle of 15° leads to an 
increase in the efficiency of the system in the winter. 

6.  Conclusions.  
A mathematical model of the phase transition point of the ether is developed. A mathematical model 
of radiant heat transfer vacuum solar collector is clarified. The dependence of change of temperature 
of walls of the reservoir from the ambient temperature over time is obtained. The results of the paper 
can be useful in the development of prospective sources using solar energy. 
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