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Abstract. Obstacle detection and avoidance are major research fields in unmanned aviation. 

Map based obstacle detection approaches often use discrete world representations such as 

probabilistic grid maps to fuse incremental environment data from different views or sensors to 

build a comprehensive representation. The integration of continuous measurements into a 

discrete representation can result in rounding errors which, in turn, leads to differences 

between the artificial model and real environment. The cause of these deviations is a low 

spatial resolution of the world representation comparison to the used sensor data. Differences 

between artificial representations which are used for path planning or obstacle avoidance and 

the real world can lead to unexpected behavior up to collisions with unmapped obstacles. This 

paper presents three approaches to the treatment of errors that can occur during the integration 

of continuous laser measurement in the discrete probabilistic grid. Further, the quality of the 

error prevention and the processing performance are compared with real sensor data. 

1. Introduction 
Obstacle detection for unmanned vehicles often uses approximated environment representations to fuse 

sensor data [1–3]. Obstacle maps are in general approximation of the real environment, to declare free or 

obstacle occupied spaces. A classification of various objects, e.g. trees or houses, is not the aim, the 

statement is rather: free spaces can be safely crossed and occupied areas are to be avoided in order to 

avoid collisions. Map-based obstacle detection approaches [2, 3] often use global discrete representation, 

which is also named occupancy grid [4]. A cell m of a discrete grid M describes a space that is free or 

partly occupied by an obstacle. The basic idea of an occupancy grid bases on the assumption of an ideal 

sensor. Each grid cell is described binary as free or occupied. A sensor measurement p is a distance 

measurement from a sensor origin OS to an optically “impenetrable” surface. p describes the intersection 

between a ray and a surface. The cell containing p is described as occupied. The cells which are cut only 

by a ray, are set as free. The assumption of an ideal sensor, which can be trusted in any situation, cannot 

be maintained. Common approaches [1, 2, 5, 6] use an occupancy probability p(pn) per cell, which is 

based on the deficiencies of the used sensor. This implementation is referred to as the occupancy 

probability grid. 

The conversion of continuous measurements in a discrete grid M can generate contradictory 

statements about the occupancy of a cell m. The cause of contradictory statements is a rough grid 

resolution with respect the sensor resolution. m has a predefined edge length and it cannot be guaranteed 

that an obstacle will fill completely m. It is more probable that an obstacle occupies only a part of m and 

few rays end in m and another number of rays intersect m. Opposing occupancy probabilities p(pn) for m 
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are the result. However, combinations of opposing p(pn) are desirable at an occupancy grid to treat 

dynamic objects or sensor noise. Static obstacles are also influenced by the comparison of occupancy 

probability. Theconsequence is, based on the grid, angle and distance resolution as well as the trace of 

the measurements through the grid, areas in the grid are declared as free against the situation in the real 

world. Ignoring existing obstacles in M can lead to collisions between unmanned vehicles and obstacles. 

The hazard of ignoring static objects during the iterative conversion of continuous distance 

measurements in a discrete grid is followed named conditional unwanted free-declaration (CUFD). 

The following section describes CUFD theoretically and by using real flight test data. Afterward, 

three approaches to covering CUFD are presented. Subsequently, a validation and a comparison of the 

methods show the quality of the prevention and their processing performance. 

2. Problem with CUFD 
A rudimentary 2D example visualizes CUFD in Figure 1. The inertial situation visualizes Figure 1a, 

three measurements p0 − p2 at a surface (blue) send from static sensor pose OS. The measurements are 

iteratively added to M. The resolution of M is dm. Figure 1b shows a subsequently incremental adding 

of measurements p3 up to pn and an update of M. Green cells are free spaces with an occupancy 

probability p(m) < 0.5. Red areas are occupied with p(m) > 0.5. White areas are unknown with p(m)= 

0.5. Different intensity of colorization of freely declared cells represents different significance p(m). A 

p(m), which deviates from the probability of a single measurement is incrementally updated with p(pn) 

of subsequent measurements. Therefore p(pn) of measurements are combined with the current cell 

probability p(m). The example shows some darker green cells which are cut by more than one ray. These 

cells are probably less occupied than lighter green cells, which are only intersected by a single ray. 

Figure 1b shows CUFD using the example of p2 and p3. The significance for occupied and free is set 

identical for an incremental update to show an immediate modification. p2 is added in M in Figure 1a. 

The cell mp2 is dedicated as occupied. In Figure 1b is added p3, which is not within mp2 , but the ray 

that connects OS with p3 intersects mp2 . This situation creates competing occupancy statements for 

mp2 . Thus, no unique cell occupancy is possible and the resulting declaration is unknown. Several 

intersections enable that initially occupied cells switch into free, although they are partially occupied by 

obstacles. Figure 1b shows this situation for mp2 up to mpn . 

The phenomenon attributes to the aliasing effect [7]. The Cause is a rough discretization of 

analogous measurements and representation in a grid. Figure 2a and Figure 2b show the same situation 

as also Figure 1.a and Figure 1b but with a grid resolution dm/2. An increased grid resolution is 

comparable to an increased sampling rate which suppresses the aliasing effect. Figure 2b shows that 

each cell is cut only by one ray and no free-declaration is made by partial occupied cells. The 

observation in Figure 2b is only correct taking into account the used sensor resolution and the 

considered distance. For dissimilar terms, a doubling of the resolution does not have to be sufficient. An 

increasing of the grid resolution is not unlimitedly possible because a halving of the cell size leads to a 

cubic increasing of cell number by a constant expansion of M. An increase can lead to computational 

problems on limited hardware. The example in Figure 1 is simplified. The same significance is used for 

occupied and free modification of a cell. Practical approaches use the bayesian-probabilistic-update in 

general with different significances to update the grid conservatively. Each obstacle should be added to 

the grid with the first measurement. Cleaning out an obstacle from the grid should require several 

updates. This practice requires several overlapping rays to visualize CUFD at a prior occupied cell. 
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Figure 1: CUFD of occupied cells 

as Result of grid resolution dm. 
 Figure 2: CUFD of occupied cells as 

Result of higher grid resolution dm/2. 

Figure 3 shows a real-environment situation. The data are generated during a flight of an unmanned 

helicopter through two pillars which are positioned on plane grassland, shown at Figure 3a. Figure 3b 

shows the used unmanned helicopter1. The data are generated with 2D Light Detection and Ranging 

(LiDAR) and are combined with the known pose of the helicopter to a 3D point cloud (Figure 3c). The 

expected result of a conversion of a recorded point cloud in Figure 3c to an occupancy grid is shown in 

Figure 3d. But Figure 3e shows the actual result when integrating all individual measurements 

sequentially into the grid. Significant parts of the grassland are not declared as occupied in the grid. For 

a better visualizing of the wrongly declared parts, the initial point cloud is depicted also. The incidence 

angles of the laser rays are almost parallel to the grassland plane (≈ 70◦). As a result, a few cells 

representing the grassland are intersected by several rays. A greater number of overlapping rays against 

ending rays lead to CUFD and without further verification with the real situation a collision of the 

helicopter with the grassland could be possible. 

 

Figure 3: Example situation for CUFD. 

The grid resolution should be based on the Nyquist-Shannon-sampling theorem to prevent the 

aliasing effect and CUFD. The grid resolution should be at least twice the sensor resolution at the 

coordinates at which a sensor measurement is made on an object surface. Such high grid resolution is not 

always predictable, especially onboard real-time approaches. The use of occupancy grids with a 
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resolution that is less than the sensor resolution requires the development of approaches which reduce 

the effects of the aliasing effect. This means that the aliasing effect is not impeded, but it is less visible, 

as seen in Figure 3e. 

3. Approaches 

The current section presents three approaches to covering CUFD. The first approach is based on 

common literature and conducts as a comparison object. The second method works with an increase of 

the grid resolution based on a specific grid data structure. The last approach solves CUFD by 

considering grid cells not as independent spaces but rather by evaluating the cells based on their 

positions along the measuring ray. 

3.1. Reduction of CUFD with large point clouds 

Scherer [3] and Wurm [8] suggest as a solution of CUFD not to add single measurements to a grid but 

rather to add a pre-combined set of measurements Ci. This combination limits the mutual influence of 

neighboring measurements. Hornung [9] presents a FIFO buffering of several LiDAR scans St  in a 

point cloud Ct−n:t=   
 
     with n = const. For each measurement in Ct−n:t a ray and the respectively 

intersected cells in the grid are determined.  The determined cells are uniquely stored in two separate 

sets (free, occupied). Subsequently, the elements of the sets are modified in the grid. Based on the 

assumption, the declaration significances of a one-time free- and occupancy-declaration are not the 

same. This procedure prevents a free-declaration of uniquely occupied cells for the measurements in 

Ci. 

3.2. Covering CUFD with an octree 

The use of a grid data structure that allows data to be extracted for subsequent computations in a reduced 

resolution from the grid as the resolution in which the data were added to the grid can also solve CUFD. 

The octree [10] data structure enables this function. If a measurement ray is added to an octree, leaves at 

the tree height h are declared with the respective occupancy probability. Updates of the inner tree nodes 

from the direct parent node to the root node follow the declaration of a leaf. In the current case, the update 

p̂(n) of an internal node is performed by p̂(n) = maxiP(ni) on the basis of the maximum p(ni) of the 

child nodes. This procedure suppresses the free-declaration of nodes and the CUFD with each 

reduction of the tree depth d. Measurements are added to the tree at a tree depth dh = h − 1. The 

measurements are obtained from the tree at level dh−λ  with λ ≥ 1. This approach works with an 

increase of the grid resolution with the drawback of a cubic growing cell number by halved resolution. 

Consequences are a higher memory consumption and higher computing requirements. In order to limit 

this drawback, only the additions of measurements in M at a high resolution ensure. Follow-up 

processes, such as the obstacle avoidance, extract the map at a lower resolution and therefore, no 

increasing memory and computing requirements are expected for these processes. 

3.3. Conditional free-declaration of occupied cell 

CUFD can also be prevented by the fact that the occupancy of a grid cell is not interpreted as an 

independent space description but rather is set in relation to its neighbors along a measurement ray. If 

the incidence angle of a ray Rp leading to a measurement p is relatively small, CUFD accrues among 

spatially close measurements along Rp between the first intersected occupied cell and the cell which 

contains the end of Rp. This condition occurs in two cases. Firstly, the gradient of the hit surface is 

locally almost parallel to the grid axes. The ray Rp runs from the first contact with an occupied cell in the 

interior of occupied cells. No free cells are cut. This situation represents the measurement p1 in Figure 4. 

Secondly, the gradient of the hit surface is locally non-parallel to the grid axes. This case eventuates the 

aliasing effect, Rp intersects recurrently occupied and free cells. Measurement p0 visualizes this case in 

Figure 4.  
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Figure 4: Ray path within the occupancy grid, which leads to CUFD. 

 

Figure 5: A finite-state machine for Conditional free-declaration along a ray Rp. 

CUFD can be prevented in these cases by allowing a ray to intersect a number thocc occupied and 

thfree free cells in the neighborhood of p without reducing p(Z) of the intersected cells. This behavior 

requires that the cells in the neighborhood around p are not independent spatial descriptions but rather in 

relation to each other along Rp. The referencing of cells along Rp is carried out with a finite-state 

machine A = (S, Σ, δ , F, q0) runs in addition to the inverse sensor model for each cell. The parameters 

are: S set of states, δ state-transition functions, Σ input alphabet, F set of final states and q0 initial state. 

The behavior and the transitions of A are shown in Figure 5. The ray Rp starts at the sensor origin mOs 

and A is initialized at state q0. A remains at q0 to Rp intersects a cell mk with (p > puk). At q0 two 

counters i = 0 and j = 1 are initialized which control the thresholds thfree and thocc. thocc describes the 

maximum number of occupied cells in series along a ray, which could be intersected by Rp without 

modifying their occupancy probability. The second threshold thfree defines the maximum number of 

free cells between two occupied cells which are intersected by Rp without modifying their occupancy 

probability. If i and j are greater than the thresholds the current “the conditional free-declaration” 

approach is aborted for the current ray and is returned to the original approach. All measurements along 

Rp are updated independently of the relations between the cells with the original 

bayesian-probabilistic-update. A switches from q0 to q1 if Rp arrives the first occupied cell mocc,k, k = 

1. The current occupancy probability of mocc,1 is not modified at q1. If further occupied cells mocc,k 

follow on mocc,1, A stays in q1 under the condition j ≤ thocc. If the condition j ≤ thocc is torn, A 

switches to the final state q4. The arrival of q4 prevents the conditional declaration for the current ray. If 

mocc,1 if followed by the end of the ray mp, A jumps in the final state q3. The arrival of q3 enables the 

conditional free-declaration. All cells intersected by Rp are not modified, except for mp which is 

updated by the bayesian-probabilistic-update. Follows on mocc,k a free cell mf ree,1, A switches from 

q1 to q2. This branch of A treats CUFD at an aliasing-situation. Follows on q2 further free cells mfree,k, 

A stays at q2 under the restriction i ≤ thfree. If the restriction breaks, A switches to q4 and it follows an 

update of all intersected cells. Is mfree,k; followed by an occupied cell with maintaining i ≤ thfree, A 

goes back to q1 and the branch to treat the aliasing effect is reinitialized. The reinitializing enables to 

deal with longer aliasing sections. If mfree,k if followed by the end of the treated ray mp, A is 
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transmitted in the final state q3 and allows an execution of the conditional free-declaration. The ability 

to handle dynamic obstacles remains with this implementation.  

4. Validation 

The functionality of the three presented approaches is validated by a comparison against an expected 

nominal condition. The used data are generated with the LiDAR “Hokuyo UTM-30LX” carried by an 

unmanned helicopter. The expected nominal condition presents Figure 3d. The validation ensues in two 

steps. Firstly, several exemplary parameter sets are presented to get an idea which sets best prevent the 

CUFD. The used data contain three obstacles, two pillars and a ground plane. The pillars are clearly 

visible in Figure 3d as well as in Figure 3e. Otherwise, the ground shows a lot of holes base on CUFD. 

Therefore the aim is to identify sets which generate a closed ground plane. This validation is qualitative. 

The presented approaches are used in online mapping application for an Unmanned Aircraft (UA). 

Therefore the second validation focuses on run-time, complexity and memory consumption. This rating 

uses the best parameter set per approach of the first validation to get the processing performance for the 

best CUFD prevention. 

4.1. Parameter set for the representation of a closed ground 

The origin for parameter identification bases on an occupancy grid with a cell dimension dm = 0:5m. 

The grid bases on an octree structure with a tree height h = 10. The result of pasting the example 

measurements into the grid shows Figure 6 which is a top view of the scene in Figure 3. 

 

Table 1: Parameter sets to prevent 

CUFD.

 

Figure 6: Original situation, without 

correction of CUFD. [11] 

The coloring represents the occupancy probability p(Z) of each cell. The measurements of the used LiDAR 

are added in the grid with p(Z) = 0.8. Deviating probabilities hint to a usage of the bayesian-probabilistic-update. 

The figure shows only occupied cells with 0.5 ≤ p(Z) ≤ 1.0. The grid shows that several parts of the ground plane 

are not visible and many cells have a p(Z) ≤ 0.8. This observation indicates a contrary occupancy interpretation of 

some cells. A major cause is next to sensor noise the CUFD. The approaches are intended to close these holes and 

covers CUFD. To enables this aim, a choice of parameter sets for each approach is shown in table 1. 

Results to Approach 3.1 Figure 7 presents the results of approach 3.1, for each subfigure j scans are combined 

to point cloud Ci and integrated into the grid. The increase from j = 20 in Figure 7a to j = 80 in Figure 7d reduces 

CUFD and increases the number of cells with p(Z) > 0.8. But even Figure 7d shows holes and therefore a 

complete prevention of CUFD cannot be presented. 

Results to Approach 3.2 Figure 8 shows the use of this approach by adding measurements at tree depth d = 11 

or d = 12 and extracting at d = 10. Figure 8a shows an increased input depth about one level which reduces CUFD. 

An increase about a further level of the input depth covers CUFD (Figure 8b) completely. 

approach 3.1: combine j 

scans Si to a 

cloud 

C =    
 
    

 

3.2: add at tree 

depth din, 

withdrawal at 
dout , with 

dout < din 

3.3: 

conditional 

occupancy- 

declaration 

based on the 

thresholds 

th free and thocc 

set 1 j = 20 din = 12 

dout = 11 

th free = 1 

thocc = 1 
set 2 j = 40 din = 12 

dout = 10 

th free = 4 

thocc = 1 

set 3 j = 60  th free = 1 

thocc = 4 

set 4 j = 80  th free = 2 

thocc = 8 

 

0.5 
p(Z) 

0.6 0.7 0.8 0.9 1.0 
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Figure 7. Parameter comparison for Approach 3.1. 

 

Figure 8. Parameter comparison for Approach 3.2. 

Results to Approach 3.3 Figure 9 shows the results of approach 3.3. Figure 9a and Figure 9b show 

marginal changes against Figure 6. An increase of thocc in 3.3(3) leads to a reduction of CUFD. Further 

adaptions of the thresholds lead to a complete prevention of CUFD and fewer cells with p(Z) ≤ 0.8. 

 

Figure 9. Parameter comparison for Approach 3.3 

The results of the comparison show that all approaches are useable to more or less prevent CUFD at 

the ground plane for the used example. In a visual comparison, the parameter sets 3.1(4), 3.2(2) and 

3.3(4) show the best results. These sets are used in the next section to analyze the performances 

between the three approaches. 

4.2. Performance analysis 

The presented approaches are used in an online application by UA and therefore have to be computable 

on limited hardware (Proc.: i5-4210, RAM: 4GB) onboard a vehicle. A comparison of the parameter sets 

3.1(4), 3.2(2) and 3.3(4) should show which approach is best suited to run on limited hardware. Therefore 

the runtime per added point cloud, the number of iterations in the octree per point cloud and memory 

requirements of the grid are collected. Figure 10c shows the results. The regarded values are logged over 

recording time and bases on the shown real LiDAR data. A comparison between the approaches for the 

number of insertions in the octree per point cloud is presenting in Figure 10a. Approach 3.1(4) deviates 

from 3.2(2) or 3.3(4). The deviation shows a magnitude of about eighty times the results of 3.2(2) per 



8

1234567890

AIAAT 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 261 (2017) 012013 doi:10.1088/1757-899X/261/1/012013

 
 
 
 
 
 
 

step. This observation bases on the combination of j = 80 scans to a point cloud at 3.1(4) which is 

repeatedly added. The number of insertions at 3.1(4) also leads to an increased runtime per added point 

cloud into the octree, shown in Figure 10b. The differences are less because single measurements of 

several scans are pre-combined before they are added to the tree. The combination of measurements 

reduces the deviations between the approaches, but the great number of insertions at 3.1(4) cannot be 

balanced. The number of insertions is approximately equal between 3.2(2) and 3.3(4). This observation 

bases on the procedure, that both approaches add measurements directly into the octree without further 

pre-processing. 

 

Figure 10. Performance comparison of 3.1(4), 3.2(2) and 3.3(4). [11] 

The runtime per added point cloud shows deviations between 3.2(2) and 3.3(4). These differences 

base on the size of the respective octree and on the number of constitutive operations like the number of 

single cell operations for each added ray. Some operations in an octree such as traversing (Θ(n)) have an 

asymptotic behavior and depend on the number of nodes n at the tree.  An increased tree height h leads to 

an increased number of nodes (cells), nh=12 = N2 ∗  nh=10, whereby N = 8 is the number of children per 

node. This property leads to increased processing effort and runtime for trees with a taller height. An 

example is traversing trough inner nodes after updating a cell declaration. A further cause of increased 

runtime is a higher cell resolution at 3.2(2). This leads to a situation that fewer measurements are spatially 

located in the same cell. The modification of a cell often bases on a single measurement per cell. An 

insertion of a point cloud into a higher resolved tree results in a major number of occupied cells. 

Additionally, based on the reduced cell size, a ray intersects more cells in a higher resolved tree and 

therefore more free cells. Both points lead to increased number of touched cells and more subsequent 

operations which lead to an increased runtime at 3.2(2). 

The memory requirements of a cell are constant and independent of its depth in the tree. An increased 

tree height leads to an increased number of inner nodes. Further, each added measurement touches more 

cells in a higher resolved tree than in a lower resoled tree. Both points are connected in 3.2(3) and lead to 

higher memory requirements against the other presented approaches, as seen in Fig 10c. Approach 3.1(4) 

has higher memory requirements compared to 3.3(4), which cannot be explained by a different tree 

height. At the end (16.15 sec) of the scenario, the number of the occupied cells is nocc = 4880 for 3.1(4) 

and nocc = 4895 for 3.3(4). This deviation cannot be the cause of different memory requirements. The 

cause is the number of free cells n free = 20957 for 3.1(4) and n free = 14590 for 3.3(4), at the end of the 

logged test. The difference between the numbers of the free cells is attributable to properties of the added 

point clouds. Each cloud has a single sensor position per cloud for all included measurements. For the 

transformation of single measurements from sensor coordinates into global world coordinates and 
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combination into a point cloud, a compensation of the sensor motions is necessary. This procedure 

requires that for each measurement the correct global sensor position is used at the moment of recording, 

especially if a system like a rotating LiDAR is used. After this procedure, each point cloud often gets only 

one single sensor position for a roughly global assignment. Commonly the sensor position of the first or 

the last added measurement is used. This characteristic is also used in the implementation described 

above. An insertion of a point cloud into a grid requires a conversion of contained measurements into rays, 

which based on measurements and the overall sensor position of the cloud. Therefore, the generated rays 

are not identical with the actually measured rays. This adaption of a ray leads to the situation that 

measurements theirself stay at the same position and the number of occupied cells does not change. But 

trace and length of a ray change and lead to an adjusted number of free cells and changed cell positions 

compared to the original rays. A rudimentary example of this description is depicted in Figure 11. The 

continuous black rays connect real sensor positions with the corresponding measurements. 

 
Figure 11. Adding single measurement rays against adding a cloud with one origin. 

Cells which contain a measurement are declared occupied and colored red. All intersected cells with 

no measurements are colored green and declared as free. The overall point cloud contains the same 

example measurements but uses only one sensor position, in this example the position at cell (A6). Based 

on this position will be defined occupied and free cells with dashed rays. The declaration of occupied 

cells shows no difference between adding measurements continuously and adding the overall point cloud 

at once. But the declaration of free cells show some differences when looking at B5, C4, C6 and D7 

which are intersected only by dashed rays. These intersections declare cells as free without real 

measurement support for this classification. This behavior is critical and can be the cause of collisions. 

The example describes a combination of single measurements to a point cloud. Approach 3.1(4) 

combines several point clouds to a major point cloud. This procedure leads to a much heavier influence of 

this phenomenon. Therefore the described behavior is assumed to be a cause for the difference between 

the memory requirement of 3.1(4) and 3.3(4). The qualitative and quantitative comparison between the 

approaches 3.1, 3.2 and 3.3 and especially the parameter sets 3.1(4), 3.2(2) and 3.3(4) show that 3.3 

generates the best results to prevent CUFD during mapping LiDAR data for the presented flight scenario. 

This statement bases on less runtime, memory requirements and correct visualization of the mapped 

environment. 

5. Conclusion 
This paper deals with the phenomena of the conditional unwanted free-declaration (CUFD) which can 

occur during insertion of continuous distance measurements into a discrete probability occupancy grid. 

The cause of CUFD is a low spatial resolution of an occupancy grid compared to continuous distance 

measurements which are added into the grid and the resulting possibility that several measurement rays 

intersect a single grid cell.  If this cell is only partly occupied by an obstacle, opposing occupancy 

statements (free/occupied) are generated. Contrary occupancy statements are generally desirable at 

probability occupancy grids to handle sensor noise or dynamic obstacles. But CUFD can also accrue at 

static objects and leads to a free-declaration of partly occupied cells. Free-declaration of occupied spaces 

in an environment representation which is used for unmanned obstacle avoidance is a danger because it 

can result in a collision with a non-mapped obstacle. 

The aim is to reduce the differences between a mapping representation and the real world, to prevent 

possible collisions. Therefore, three approaches are presented to suppress CUFD. These approaches are 

validated qualitatively and quantitatively to compare the prevention of CUFD and the ability to process 
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on limit hardware. 

As result an approach is preferred which interprets cells along a measurement ray not as independent 

spaces rather the occupancy probability of a cell is set in relation to its neighbors. This procedure allows 

handling CUFD with less processing performance compared to other approaches. 
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