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Abstract. Industry 4.0 is one of the most formative terms in current times. Subject of research 

are particularly smart and autonomous mobile platforms, which enormously lighten the 

workload and optimize production processes. In order to interact with humans, the platforms 

need an in-depth knowledge of the environment. Hence, it is required to detect a variety of 

static and non-static objects. Goal of this paper is to propose an accurate and real-time capable 

object detection and localization approach for the use on mobile platforms. A method is 

introduced to use the powerful detection capabilities of a neural network for the localization of 

objects. Therefore, detection information of a neural network is combined with depth 

information from a RGB-D camera, which is mounted on a mobile platform. As detection 

network, YOLO Version 2 (YOLOv2) is used on a mobile robot. In order to find the detected 

object in the depth image, the bounding boxes, predicted by YOLOv2, are mapped to the 

corresponding regions in the depth image. This provides a powerful and extremely fast 

approach for establishing a real-time-capable Object Locator. In the evaluation part, the 

localization approach turns out to be very accurate. Nevertheless, it is dependent on the 

detected object itself and some additional parameters, which are analysed in this paper. 

1. Introduction 

In future smart factories, every machine will communicate and fuse their information from the 

physical and virtual world, in order to accomplish fully autonomously their tasks with less effort. 

Especially smart mobile platforms like robots will enormously lighten the workload and will optimize 

production processes in Industry 4.0. In order to interact with the environment, the robot has to 

recognize and localize objects. In addition, especially in traffic control, short response times are 

important. The contribution of this paper is to establish an object detector and locator for a mobile 

platform, which is very fast and reliable and works even in unknown environments. With deep 

learning, currently being state of the art in computer vision, the problem is tackled in this paper by a 

CNN.  Since 2012, every winning team in the ImageNet Large Scale Visual Recognition Challenge [1] 

has used a convolutional neural net [2], [3]. The recently released YOLO Version 2 (YOLOv2) 

detection network [4], [5] outperforms current state of the art networks in performance (e.g. VGG Net 

[6]) and precision (e.g. ZF Net [7]). Additionally, it is empowered to detect almost 9000 different 

object classes. Hence, it poses as an optimal candidate. As detection networks only locate objects 

within a camera image, an efficient and real-time capable approach is introduced to translate the 

powerful detection capabilities of a neural network into the 3D space. It combines detection 
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information of a neural network with depth information from a RGB-D camera mounted on the 

platform. In order to find the detected object in the depth image, it maps the bounding boxes, predicted 

by the detection network, to the corresponding regions in the depth image. It provides a powerful and 

extremely fast approach for establishing a real-time-capable Object Locator.  

The paper is organized as follows. In Section 2 the object detection with YOLOv2 is shortly 

described, in Section 3 the spatial location approach using detection and depth information is proposed. 

This approach is evaluated in Section 4. Further research is pointed out in Section 5. 

2. Object detection with YOLOv2 on the mobile platform 

In this Section, the object detection with YOLOv2 (Subsection 2.1) and the integration into the mobile 

platform (Subsection 2.2) is described. Goal of this section is to summarize the key features in 

comparison to other convolutional neural networks. For further information the interested reader is 

referred to [4]. 

2.1 Object detection with YOLOv2 

You Only Look Once (YOLO) is both name and motto of a fast and precise object detection network, 

which was released in 2016. The system was made to look only once at an image to detect objects. In 

Figure 1, the basic approach of YOLOv2 is depicted. 

YOLOv2 belongs to the class of so called single-shot networks, e.g. SSD [8]. It models object 

detection “as a single regression problem straight from image pixels to bounding box coordinates” [9], 

called detection as regression. Thus, it is significantly faster than common networks and has a less 

complex network pipeline. Based on the entire image, it predicts category scores and box coordinates 

for a fixed set of bounding boxes, unifying separate components of object detection. YOLOv2 divides 

an image in a S×S grid (cf. Figure 1) and predicts B bounding boxes for each grid cell with four 

coordinates and a confidence score for those boxes. Additionally, each cell predicts C class 

probabilities. All in all, this leads to a predicted tensor, which is used for regression. 

 
 

(1) 

 

 

Figure 1. YOLOv2 divides an image into a grid, with each cell 

predicting a fixed amount of bounding boxes and a class score. 

Figure is adapted from [10]. 

 

Many detection frameworks rely on the powerful and accurate VGG-16 CNN [10] for feature 

extraction. But it has a major drawback, namely a complex pipeline. This makes it difficult to use in 

real-time systems, as it requires 30.69 billion floating point operations for a single image in its 
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convolutional layers [4, p.5]. To be real-time capable, YOLOv2 uses an own convolutional neural 

network called “Darknet”. It is less complex but much faster than VGG-16, requiring only 5.58 billion 

operations while having only a slightly worse accuracy of 2% than VGG-16. In the ImageNet 

Challenge, it achieved a top-5 accuracy of 88%.  

To sum up, the overall advantages for the integration on a mobile platform are 

 YOLOv2 outperforms current state of the art networks in performance and precision 

 YOLOv2 is able to detect over 9000 different object classes 

 YOLOv2 is delivered as an enclosed program. Therefore, it can be used instantly without the 

necessity of being created and trained 

2.2 Integration into a mobile environment 

YOLOv2 is integrated into a mobile environment to fuse its detection capabilities with other sensors 

on a mobile platform. A robot laboratory is used, which provides space and hardware for testing and 

implementation of YOLOv2. The robot SUMMIT XL, developed by Robotnik [11], serves as a mobile 

platform. In order to communicate with sensors of the robot, YOLOv2 is combined with the Robot 

Operating System (ROS). ROS is a framework, providing a communication infrastructure between 

sensors, which enables them to pass messages to each other. These messages contain sensor data or 

status information [12]. The RGB-D Camera is used as a sensor for the detection and localization 

approach. 

3. Spatial localization approach 

The approach of fusing the classification and detection information of YOLOv2 with the Depth-Image 

is described in this section. A general overview is depicted in Figure 2. The RGB-Image is used as 

input of the YOLOv2 algorithm, which outputs the classification and the detection areas of the objects. 

 

 

Figure 2. The road map shows the flow of information from the sensor to the 

created map, which is based on the fusion of deep learning (output of 

YOLOv2) and the depth-image. 

An example of the output of YOLOv2 is presented in Figure 3. Four objects are present in this 

scenario: chair, cup, sports ball and person. All objects are classified correctly and the bounding boxes 

are drawn around the objects. The resulting bounding boxes are used for the definition of the regions 
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of interest in the Depth-Image. An example of a Depth-Image with detected bounding boxes is 

presented in Figure 4.  

 

Figure 3. Output of block “ROS Implementation of YOLOv2” of 

Figure 2. The detection (bounding boxes) and the classification results 

are depicted. These results are used for the fusion in the Object Locator. 

 

Figure 4. The depth image, which is enhanced by the detection results 

of YOLOv2. The bounding boxes select the interesting areas for the 

Object Locator. 

 

The detected bounding boxes in the Depth-Image are used in the Object Locator. The Object 

Locator performs the following steps. Firstly, the selected bounding boxes are background filtered.  

The background is always the surface having the largest distance to the camera. So, all depth values 

within an interval between the maximum depth and a certain threshold are denoted as “background” 

and are set to zero. For the following experiments, the threshold was set to 0.05 m. Secondly, the 

depth values are clustered with K-means. Best results are given for K = 4. Finally, the mean average of 
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the biggest cluster is used for the distance estimate. The classified objects are mapped to an existing 

database, which represents the current map. 

4. Evaluation 

The proposed approach of Section 3 is evaluated in dependence of the distance for two different 

objects, a sports ball and a person. Figure 5 shows the difference between the true depth and the mean 

predicted depth values from 1m … 5m for the two objects. Due to the fact that the objects are placed 

in the center of the camera image (x = 0, y = 0), the depth corresponds to the distance between the 

object and the robot. It can be seen, that in nearer distances the depth values of the sports ball are more 

accurate than the values of the person. As the surface of the ball is plain, the dominating cluster 

contains more similar depth values than the surface of a person. As the person is very close to the 

camera, only the legs of the person are captured by the camera. Therefore, the mean depth value of 

this cluster slightly differs from the ground truth. The precision of the depth values corresponding to 

the person gets more accurate at a distance of 2 meters, as there are more parts of the body in the 

camera view. Hence, the person provides a new kind of surface, which is apparently better located. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With an increasing distance, the depth values of the person are more accurate than the values of the 

ball, because there are more depth values to evaluate in the chosen cluster and the cluster mean value 

is less influenced by outliers. 

The prediction of the depth values and therefore the localization depends not only on the distance, 

but also on the surface of the evaluated object. Objects with a plain surface are better localized. In 

addition, it is shown that the position of near objects is estimated very accurately. Nevertheless, the 

localization only works well if the correct cluster was chosen. In the case of the ball and person, the 

number of four clusters was suitable, because no other object was put in the same cluster and every 

chosen cluster had enough values for a representative centroid. All in all, the approach seems really 

promising for the fusion of localization with RGB-D and classification with YOLOv2. 

5. Conclusion and further work 

This paper addressed the object detection within the RGB image of the camera and the fusion of the 

detection results with depth information. YOLOv2 was used for detection and was integrated into a 

robotic framework, which made a very fast and powerful object detector available for mobile 

platforms. It turned out that the detection confidence is very dependent on the number of image points 

 

Figure 5. Difference between ground truth and mean predicted depth 

values in relation to the distance of the object. 
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and the object type. Empowered with an internal object detector, new possibilities were given to find 

the correct depth regions. The difference between the ground truth and the mean predicted depth 

values in relation to the distance of the object were analysed. It was shown that there is a strong 

dependence between the distance of the object to the depth sensor and the accuracy of the approach. 

Nevertheless, the proposed approach showed very promising results. In posterior works, the 

localization could be further improved by additionally considering spatial information in the clustering 

process. Furthermore, instead of the K-Means algorithm the X-Means algorithm could improve the 

proposed Object Locator. It introduces an approach to find the optimal number of clusters in the 

cluster space by optimizing the Bayesian Information Criterion. Last but not least, it is necessary to 

extend the Object Locator to provide a statistically proven confidence score. 
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