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Abstract. Non-destructive testing (NDT) techniques are used in industry to evaluate the 

properties of a material, component or structure without causing any permanent damage. 

Among the techniques, pulsed eddy current (PEC) NDT is regarded as a new technique where 

a broadband pulse excitation is used, as opposed to single frequencies employed in 

conventional eddy current NDT. In this study, a 2D axisymmetric electromagnetic model of a 

PEC probe has been developed and it has been used to study the effects of the excitation coil 

diameter on the performance of PEC probes in sample thickness measurement. A PEC system 

has also been built to validate the model. Aluminium plates are used as the sample and they 

can be stacked up to replicate thickness from 1 mm to 10 mm. The results show that there is a 

very good correlation between the simulation and experimental results, with an average error of 

less than 10%. The results also suggest that the larger the diameter of the excitation coil, the 

deeper the penetration and therefore the larger the thickness measurement range. It has also 

been shown that although the larger diameters have deeper penetration, the smallest diameter 

has the highest sensitivity if normalization is not used. These conclusions indicate that coil 

diameter is an important parameter in a PEC probe design for thickness measurement 

applications. 

1.  Introduction 

Non-destructive testing (NDT) technologies are widely used in various types of industries such as 
aerospace, manufacturing, automotive, construction, military, oil and gas to characterize material 

properties, detect and characterize the flaws in structures or materials. NDT applications assure that 

the tested materials are not damaged during the testing so that their future usage is not affected.  
Safety, quality and operational costs benefit greatly from the use of NDT. 

Pulsed eddy current (PEC) is in general still considered as a new emerging technique in non-
destructive testing and evaluation (NDT&E). Being a member of eddy current testing (ECT) family, 

PEC shares the advantages of ECT, such as reliability and minimal preparation of samples. PEC has 
been employed in detection and characterization of defects, measurement of stress and measurement 

of thickness, among others [1]. The advantage of the PEC technique comes with its wide bandwidth of 

excitation frequencies that are excited simultaneously. 
An example of the work in PEC for thickness measurement is [2], where Q235 steel plates with a 

thickness of up to 30 mm was measured. Shin et al. also investigated thickness measurement for 

different materials, including copper and titanium [3]. Röntgen Technische Dienst’s PEC system is 

capable of measuring the wall thickness made of low alloy carbon steel of up to 65 mm [4]. Other 
works done on thickness measurement for wall thickness of pipes include [5], [6], [7], and [8].  
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The success of thickness measurement by using PEC depends on the depth of penetration of the 

induced eddy currents, which is affected by many factors, such as the height of the coil, the number of 

turns and the lift-off. The understanding on the effects of these parameters is paramount for designing 

an optimum PEC probe. The depth of penetration is increased when the height of the coil is increased 

although the magnetic field density is decreased at the surface of the material. The number of turns of 

the coil is very important in determining the strength of the magnetic field generated by the coil. 

However, it has been reported that the number of turns does not affect the depth of penetration [9]. 

Only the strength and sensitivity will be affected by varying the number of turns of the coil. The effect 

of another parameter, which is the lift-off, on depth of penetration has been studied by Janoušek [10], 

who found that the larger the lift-off, the higher the depth of penetration but results in lower 

sensitivity. 

The aim of this work is to investigate the relation between PEC’s excitation coil diameter and the 

depth of penetration and the sensitivity in thickness measurement of non-ferromagnetic metallic 

samples. The study will be carried out through both finite element modelling and experimental tests. 

In the following sections, the modelling, experimental setup and results will be described. Discussion 

and conclusions are presented subsequently. 

2.  Modelling 

In this study, a 2D axisymmetric finite element model has been built by using Comsol, as illustrated in 

figure 1. The model includes an excitation coil and an aluminium plate as the sample that has an 

electrical conductivity of 26.33 x 106 S/m. The number of turns is fixed at 144 turns while the coil 

current is 3A. The sample’s thickness is varied from 1 mm up to 10 mm with an increment of 1 mm. 

The dimension of the plate is 130 mm x 130 mm. The magnetic flux density is measured at the 

coordinate (0, 1) mm.  

Initially, the simulation was started with 20 mm diameter of coil with sample thickness of 1 mm. 

Then, the thickness of the sample was increased by 1 mm until it reached 10 mm. Subsequently, the 

same steps were repeated for coil diameters of 30 mm and 40 mm.  

 
Figure 1. The Geometry of the 2D axisymmetric Model 

3.  Experimental Setup 

A PEC system has been implemented for the experimental setup that will be used to gather data for 

validating the built model. The steady-state excitation current is 3 A. Probes of different diameters 

have been built, where each of them contains an excitation coil and a sensing device. The coil bobbin 
was made by using a 3D printer. The excitation coil windings use copper wire and have 144 turns. A 

Hall-device (A1324) with a sensitivity of 5mV/G has been used in each probe. Figure 2 shows the 
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illustration of the probe and the sample. For the specimens, aluminium plates have been used whose 

dimensions are 130 mm x 130 mm x 1 mm. Different sample thicknesses were achieved by stacking 

the plates up accordingly.  

 

 
Figure 2. Set-up of the Experiment 

 

For acquisition of the transient magnetic field signals, a data acquisition (DAQ) system was used 

with a sampling frequency of 50 kHz. The data of the magnetic flux density has been recorded for 

each variation of thickness by using a LabVIEW-based application. Figure 3 shows the block diagram 

of the overall system. The DAQ card was also used to generate the excitation signal with 1 Hz 

frequency and 0.5% duty cycle. The low duty cycle was chosen to minimize the heating effects of the 

coil and the components within the excitation circuit. 

 
Figure 3. System Block Diagram 

 

For thickness measurement in this study, the parameter to be used is the peak value of the 

differential PEC signal [1], which is illustrated in Figure 4. 

 

Figure 4. Typical PEC Signals: Base, 

Reference and Differential 

4.  Results and Discussion 

In order to compare the trend of the peak values for different thicknesses, normalization of the 
measured magnetic field signals has been used to reduce the effects of the excitation current 

variations during the tests. The normalized PEC signals were calculated as  

 𝐵𝑛𝑜𝑟𝑚(𝑡) =
𝐵(𝑡)

𝐵𝑠𝑠
 (1) 

, where 𝐵𝑛𝑜𝑟𝑚 is the normalized magnetic field density, 𝐵 is the measured magnetic field 

density and 𝐵𝑠𝑠 is its steady state value. Signal normalization is commonly used in PEC. 
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Figures 5 and 6 show typical normalization results obtained by using both simulation and 

experiment, which show that both sets of results show similar trends in the transient magnetic field 

density. The rate of change of the magnetic flux density decreases when the thickness of the plate is 

increased. However, the rate of change increases when the coil diameter is increased.  

 

Figure 5. Normalized Signals from the 30-

mm-Diameter Probe (Simulation) 

 

Figure 6. Normalized Signals from the 30-

mm-Diameter Probe (Experiment) 

 

 

Figure 7. Examples of the Resulting 

Differential Signals (Simulation) 

 

Figure 7 shows typical differential signals, which were derived by subtracting the normalized 

reference signal from the normalized response signal. The reference signal used was the signal 

obtained from the sample thickness of 10 mm. It can be clearly seen that the intensity of the 

differential signal is higher for lower thicknesses. 

4.1.  Model Validation 

The peak values were then extracted from the differential signal obtained through both experiment and 

simulation, which are plotted in Figure 8 and tabulated in Table 1, which also highlights the good 

correlation between the simulation and the experiment with most of the errors are less than 10%. This 
result indicates that the developed model is reliable to be used in further analysis and prediction of 

thickness measurement and depth of penetration. 
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Figure 8. Normalized Peak Values vs. Sample 

Thickness for Different Coil Diameters 

(Simulation and Experiment) 

  

Table 1. Peak Values from Both Simulation and Experiment 

 

Normalized Peak Value (no unit) 

Probe diameter → 20mm 30mm  40mm  

Method → 
Simula-

tion 

Experi-

ment 

Error 

(%) 

Simula-

tion 

Experi-

ment 

Error 

(%) 

Simula-

tion 

Experi-

ment 

Error 

(%) 

S
a
m

p
le

 

T
h

ic
k

n
e
ss

 (
m

m
) 1 0.254 0.220 -13.0 0.351 0.346 -1.4 0.432 0.432 0.0 

2 0.134 0.124 -7.6 0.206 0.218 5.8 0.283 0.288 1.6 

3 0.078 0.073 -6.7 0.142 0.153 7.9 0.192 0.203 5.8 

4 0.051 0.046 -9.6 0.093 0.093 0.3 0.130 0.149 14.8 

5 0.032 0.031 -3.9 0.060 0.062 4.4 0.093 0.092 -1.7 

6 0.019 0.018 -6.9 0.041 0.050 23.8 0.064 0.068 6.8 

4.2.  Range of Thickness Measurement 

By using the model, the relationship between the normalized peak value and the thickness was derived 

for each coil diameter, as can be seen in figure 9. 

 

Figure 9. Plots of the Peak Values 

vs Thicknesses with their 

Exponential Curve-fittings (Based 

on Simulation Results) 
 

In order to determine the range of measurement, a signal-to-noise ratio of 3 was assumed. Due to 

different field strengths of the coils, the minimum normalized for each coil diameter is different and 

shown in table 2. The table shows that the range of measurement gets higher as the diameter is 

increased. It shows that if the area of induced eddy currents is larger on the surface of the sample, then 

the eddy currents penetrate deeper into the sample.  

 

Table 2. Prediction of the Maximum Measurable Thickness 
Coil Diameter 20 mm 30 mm 40 mm 

Steady State Value (T) 0.0219 0.0155 0.0123 

Min Peak Value (V),  SNR = 3 0.0106 

Min Peak Field Density (T),  SNR = 3 0.00021 

Min Normalized Peak Value,  SNR = 3 0.0097 0.0136 0.0171 

Predicted Max Thickness (mm) 9.7 11.9 13.6 
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4.3.  Sensitivity 
Although the largest diameter has the largest measurement range, the smallest diameter looks to have 

the highest sensitivity for thinner sample measurement when normalization is not used. This can be 

seen from the change in the measured field density when the thickness is changed from 1 to 2 mm, 

which shows the 20-mm-diameter coil has the highest change, as can be seen in Table 3. This is in 

contrast to the thickness change from 6 to 7 mm, where the 40-mm-diameter coil has the highest 

output change. Therefore, it can be concluded that the sensitivity of the probe does not only depend on 

the diameter, but only on the measured thickness range. 

 

Table 3. Sensitivity in Different Thickness Ranges 

Thickness change → 

∆B (T) 
1 mm - 2mm 6 mm - 7 mm 

C
o

il 

d
ia

m
et

er
 

(m
m

) 20 0.00276 0.00012 

30 0.00235 0.00022 
40 0.00185 0.00027 

5.  Conclusion 

A few conclusions can be drawn from the results obtained in this work. Firstly, the 2D axisymmetric 

model has been validated by the experimental results with an average error of less than 10%, 

indicating that it is a useful and reliable tool for predicting the performance of a PEC probe design in 

sample thickness measurement. Secondly, the larger the diameter of the excitation coil, the deeper the 

penetration and therefore the larger the thickness measurement range. Thirdly, although the larger 

diameters have deeper penetration, the smallest diameter has the highest sensitivity if normalization is 

not used. Overall, the work shows that coil diameter is an important parameter the optimization of a 

PEC probe design.  
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