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Abstract. Double-diffusive natural convection in porous layer saturated with a binary fluid is 

presented in this study. The layer is anisotropic with respect to both its permeability and 

diffusivity and is inclined with respect to the horizontal axis. The vertical walls of porous 

cavity are subjected to uniform temperature and concentration where the other surfaces are 

assumed to be adiabatic and impermeable. The governing equations are solved by the finite 

volume method. The study focuses on the effects of anisotropy in permeability and the 

inclination angle of the flow structures on heat and mass transfer. The results are presented and 

analyzed in terms of streamlines, isotherms, isoconcentrations lines and average Nusselt and 

Sherwood numbers. They  indicate the existence of three regimes. A diffusive regime, a 

transition regime and an asymptotic regime.They are in good agreement with those found in 

the literature.  

1. Introduction 
The heat and mass transfer phenomena within porous configurations are particularly important to 

study because of the large number of industrial or environmental applications in which they are 

present. In most cases, natural convection of heat and/or solutal source plays a decisive role in the 

transfers involved. 

Cheng and Chang [1] studied the natural convection heat transfer from impermeable horizontal 

surfaces in a saturated porous medium. Bejan and Khair [2] examined the natural convection boundary 

layer flow driven by both temperature and concentration gradients. Most studies [3-5] of thermosolutal 

convection induced in isotropic or anisotropic porous medium saturated by a fluid consider a single 

layer of porous medium in the case of rectangular cavities. Among these studies, it can be mentioned  

the numerical investigations of the simplified problem of square porous cavity where the vertical walls 

are held at constant temperatures and concentrations and the horizontal surfaces are considered 

adiabatic and impermeable. The scale analysis permits to treat this problem in the two extreme cases 

of heat-driven and solule-driven natural convection. 

 A special focus has been made by several authors on the case where a plane porous layer is 

inclined to the horizontal and bounded by impermeable isothermal walls. A temperature difference 

between the walls may lead to an unstable stratification that has a different from that of a horizontal 

layer, Darcy–Bénard [6]. In fact, the inclination to the horizontal results in a basic stationary state 

where the fluid is not at rest, but circulates along a single cell of infinite width. The basic velocity field 

is parallel, bidirectional, and with a vanishing mass flow rate. However, most of the porous materials 

are anisotropic due to preferential orientation for either enhancing or for deteriorating heat transfer. 

Hadadi et al. [7] studied numerically thermosolutal convection within inclined porous collector 

vertically. The effect of the inclination angle is taken into account and analyzed. The results are 

presented in terms of streamlines, isotherms, and isoconcentrations and are mainly analyzed in terms 

of the average heat and mass transfers. Dimensional analysis is applied to predict analytically the 



2

1234567890

4th International Conference on Mechanical Engineering Research (ICMER2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 257 (2017) 012002 doi:10.1088/1757-899X/257/1/012002

 
 
 
 
 
 

evolution of transfer and is compared to numerical results obtained from simulations of double-

diffusive natural convection in such bi-layered porous medium for the different situations. 

The problem of double-diffusive convection in an inclined horizontal bi-layered porous cavity was 

also considered by Hadadi and Bennacer [8]. The results were also presented and analyzed in terms of 

streamlines, isotherms, isoconcentrations lines and average Nusselt and Sherwood numbers. 

Numerical and a scale analysis are used to characterize the effect of the permeability ratio on the heat 

and mass transfer in vertical bi-layered porous cavity. Singh and al. [9] have studied the natural 

convection heat transfer in inclined porous square cavities. They concluded that the larger inclination 

angle may be optimal for the energy efficient processes involving inclined enclosures due to larger 

heat flow circulations with enhanced thermal mixing. 

The aim of the present study is to emphasize on the natural convection and heat and mass transfer 

in inclined porous layer with reference to horizontal. The saturated porous medium is anisotropic in 

permeability. The vertical walls of the cavity are subjected to uniform temperature and concentration. 

The study focuses on the effects of anisotropy in permeability and the inclination angle of the flow 

structures on heat and mass transfer. The results are presented in terms of streamlines, isotherms, and 

isoconcentrations and are mainly analyzed in terms of the average heat and mass transfers.  

2. Problem formulation  
The physical model is presented in Figure 1. It is represented by an inclined porous layer saturated by 

a binary fluid. The inclination angle of the enclosure with respect to the horizontal plane is denoted by 

�. The porous medium is considered homogeneous and anisotropic in permeability and thermal 

conductivity. The vertical walls of the porous cavity are subjected to uniform conditions of 

temperature and concentration, whereas, the horizontal walls are assumed to be adiabatic and 

impermeable. A general Brinkman-Forchheimer extended Darcy model is used to account for the flow 

in the porous medium. 

 

 

 

 

 

 

 

Figure 1. Physical situation and coordinate system. 

Under the usual Boussinesq approximation, the governing equations for steady, laminar, two-

dimensional boundary layer flow under above assumptions can be written as: 
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where ρ- is the fluid  density(kg/m
3
), g is the gravitational acceleration (m/s

2
), μeff  apparent dynamic 

viscosity for Brinkman’s model(kg/m.s) ,D the equivalent mass diffusivity(m
2
/s) and  σ ratio of heat 

capacities. 

 K�  and λ1 are the second order flow permeability and thermal diffusivity tensors defined, respectively, 
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 Substituting  2 (equation (6)) in equation (5) and by applying inverse, the permeability tensor can be 

reduced to 
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Substituting λ (equation (9)’) in equation (8)’, the thermal conductivity tensor can be reduced to 
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0 1�                                                                    (10) 

The dimensionless governing equations are written as: 
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The non-dimensional boundary conditions can be expressed as follows: 

U = V = 0 , T = 0 et C = 0 at  t = 0  
∂T
∂x

= 0 ,
∂C
∂x

= 0 , U = V = 0 at Y = 0, ∀ X 

 
∂T
∂x

= 0 ,
∂C
∂x

= 0 , U = V = 0 at Y = 1 , ∀ X 

T = 1 , C = 0 , U = V = 0 at X = 0 , ∀ Y 

T = 0 , C = 1 , U = V = 0 at X = 4 , ∀ Y 

Where  φ is the porosity,  Cf : Forchheimer coefficient, U et V : dimensioneless horizontal and vertical 

velocities, X and Y are dimensioneless horizontal and vertical coordinates.  T, C, P and t: are 

respectively the dimensioneless, temperature, concentration, pressure and time. 
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The dimensionless variables are defined as: Darcy number (Da), Prandtl number (Pr), Rayleigh 

number (Ra), Lewis number (Le) and Buoyancy ratio  number (N). 
The average Nusselt and Sherwood numbers are defined by 

bu = ∫ ^�g
�F

_
Fwy

zO

y                                                                       (16)                          

                                        {ℎ = ∫ ^�}
�~

_
~wy

dY

y                                                                        (17) 

3. Numerical method  
The governing equations along with the boundary conditions are solved numerically employing finite 

volume method. For pressure and velocity coupling, the SIMPLER algorithm is used. The system of 

algebraic equations is solved iteratively by means of the Thomas algorithm. The iteration process is 

continued until the following convergence criterion is achieved. 

                                                    M�
��,�

��∆�>��,�
�

��,�
��∆� �P ≤ 10>�                                                                   (18) 

where �  is a dependent variable U, V, T et C . The indices i, j indicate a mesh point and ∆t being the 

increment of time. 

For the accuracy of the numerical results, the present study is compared with the previous study 

Bennacer et al. [10] and Ni and Beckermann [11] for horizontal rectangular porous cavity as shown in  

table 1. It is observed that the present results are in good agreement with that of [10] and [11]. This 

favorable comparison leads confidence in the numerical results to be reported in the next section. The 

relative differences observed between the results being less than about 1.5%. 

 

Table 1. Comparison the Nusselt number of present results with 

     those of Bennacer et al. [8] and  Ni  and Beckerman [9]. 

Da =10
-7

, A = 1, Ra = 10
3
, N= 0, � =0°. 

K =Ky/Kx 10
3 

10
2 

10
1 

10
0 

10
-1 

10
-2 

Bennacer et al [10] 1.00 1.29 4.17 13.48 37.56 80.62 

Ni and Beckermann [11] 1.01 1.30 4.17 13.41 37.37 80.34 

Present study 1.04 1.26 4.19 13.09 37.31 80.33 

 

4. Results and discussion 
In the non-dimensional governing equations the Forchheimer constant ( Cf   ) and porosity are taken 

respectively  0.55 and  0.8 according to Ergun relation [12]. The Prandtl number is taken to be 0.71 

throughout the computations. 

In ‘figure 2’ the effects of the inclination are illustrated for K= 10 and N = 10. The results are 

presented in terms of streamlines (on the left), isotherms (at the center) and isoconcentration (on the 

right) contours for different values of �. When the inclination decreased to � = 0° the pattern of 

streamlines of Figure 2  indicates that a large portion of the fluid in the center of the cavity is now 

stagnant due to the blocking effect of the vertical stratification of the density field in this area and the 

flow circulation is restricted to thin boundary layers of almost constant thickness, along the vertical 

walls. The isotherms are distorted and span in the diagonal direction of the entire cavity, the thermal 

boundary layer tends to be formed, located respectively on the lower and upper parts of the lateral 

walls. It is noted that the deformation of isoconcentrations increases as the tilt angle increases. 

Figure 3 shows the average Nusselt and Sherwood numbers for different inclination of principal 

axes α with different permeability ratio K for  Da = 10 
-4

, Ra=10
6
 and k =10. The effects of K on the 

transfers are noticeable. The heat and mass transfers increase with the increase of �, passes through a 

peak, and then begins to decrease. The peak in Nusselt and Sherwood number occurs at about 30 ° for 
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different values of K. The increase of permeability in vertical direction with the variation of � from 0° 

to 90° leads to decrease in energy and mass  transport, resulting in decrease of velocity.  

 The effect of the (buoyancy ratio) N on heat and mass transfer Nusselt (Nu)  and Sherwood (Sh)  

are illustrated in ‘figure 4’ for �=30° and Da =10
-4

. For a fixed value of N the heat and mass transfers 

increase with the increase of When K ˃10, the Nusselt and Sherwood numbers are found to be 

independent of K. Indeed, the resistance to the flow and then transfers decreases. For a fixed K and in 

a diffusive regime, one observes an increase of Nusselt  and Sherwood  with an increase of N, 

however it remains moderate. However over this regime, the transfers intensify. In fact, the buoyancy 

forces that induce the fluid motion are assumed to be cooperative. Nusselt  reaches a maximum for 

K=10
2
. However, for Sherwood  the behavior is reversed, the maximum mass transfer occurs for 

K=10. 

�=0°       

 

 

 

 

  

�=30° 

 

 

     

 

   

� =60° 

 

 

 

 

     

Figure 2. Streamlines (left), isotherms (center) and isoconcentration (right) 

for Ra = 10
6
,  Da = 10

-4
 , λ=10 and K=10 for different tilted angle �. 

 

 

 

 

 

                               (a)                                                                           (b) 

Figure 3. Effect of � on (a) average Nusselt and (b) Sherwood for various values of K for N = 10, Ra 

= 10
6
 and Da = 10

-4
,  λ=10 
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.  

                                 (a)                                                                               (b) 

Figure 4. Effect of K on (a) average Nusselt and (b) Sherwood for various values of N for �=0°, 

Ra=10
6
 and Da=10

-4
, λ=10. 

 

5. Conclusions 
A study is made of natural convection heat and mass transfer in a horizontal porous cavity. The porous 

medium is assumed to be both thermally and hydrodynamically anisotropic with the principal axes of 

anisotropic permeability inclined with respect to the gravity force. The major results obtained in the 

present investigation can be summarized as follows. 

For large permeability ratios (K > 1) as the inclination angle varies from α=0° to 90°,the heat and 

mass transport is maximum for α = 30°. For small permeability ratios (K < 1) as the anisotropic 

orientation angle varies from α=0° to 90°, the convective strength of the flow field gradually 

diminishes.  

The numerical results indicate the existence of three regimes, namely, a diffusive regime for low 

values of K, a transition regime where Nusselt and Sherwood numbers increase with an increase of K 

and an asymptotic regime where Nusselt and Sherwood become independent of K. 
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