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Abstract. We have studied different mineralogical objects: natural glasses of impact (tektites, 

impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray 

microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in 

the structure and chemical composition of the glasses of different origin. The analysis of the 

dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force 

microscopy, on their structural and chemical features was carried out. 

1.  Introduction 

The study of mineral surfaces by the scanning probe microscopy (SPM) methods began about twenty 

years ago. This is rather late as compared to the application of these methods in other natural science 

disciplines – physics, chemistry, biology, etc. Natural glasses were one of the first mineralogical 

objects to study by SPM. 

Glasses are melts that are solidified near the glass transition temperature, when the cooling rate 

exceeds the maximum cooling rate under the given conditions for crystallization [1]. The main 

geological processes of glass formation are: 

(i) explosive and impact processes resulting in the melting of rocks under the influence of 

ultrahigh pressures (35–90 GPa and above) and high temperatures (up to 3000 °C) as well as 

formation of impactites; 

(ii) ablation and transport of the melted substance over significant distances after explosive and 

impact processes (tektites are thus formed); 

(iii) melting of rocks at the contact with magma resulting in buchites; 

(iv) hardening of igneous melts resulting in obsidians. 

Structural differences due to PT-conditions of cooling, concentration, and composition of 

impurities, and water content, contribute to the appearance of nanoscale structural peculiarities of the 

glasses. Although the main SPM studies were carried out for artificial glasses [2-6], the most common 

natural glasses were also studied by these methods [7-9]. AFM observations of the cleavage of the 

glasses show a surface of shallow hillocks, which are usually as large as several tens of nanometers 

wide and several nanometers high. The surface roughness data are actively used to evaluate the 

processes of corrosion, fracture, and polishing in glasses. However, the nature of this roughness 

remains unclear. Many authors believe that the presence of roughness indicates that the glasses, 

including natural ones, are heterogeneous at the nanometer scale [4]. This heterogeneity can be caused 

both by density fluctuations in pure silicon dioxide, and by composition fluctuations in 
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multicomponent glasses [10]. It has been shown in [11] that the size of the hillocks is much larger in 

those glasses, in which nuclei of nanocrystallites are present. The possibility of interpreting the 

cleavage surface of the glasses from the point of view of the discovery of their structural and chemical 

inhomogeneities, allows speaking about the globular or pseudoglobular structure of the glasses; since 

for many mineralogical samples, the objects, microscopically observed on the surface, are conditioned 

by supramolecular structural features [12, 13]. Spectroscopic data allow determining the structure and 

chemical bonds in natural glasses, distinguishing volcanogenic glasses from impact glasses [14]. The 

purpose of this study is an attempt to connect structural and chemical data on natural glasses to the 

results of AFM observations of their surface. 

2.  Objects and methods 

The objects of our study were natural impact glasses: irgizite from Zhamanshin Crater (Kazakhstan) 

and Libyan Desert glass (Egypt); volcanogenic obsidians (from Kamchatka Peninsula, Armenia, and 

Italy); and moldavite related to tektites (Czech Republic). 

The chemical and local structure was determined by the methods of infrared (IR) and Raman 

spectroscopy, the local chemical composition was estimated by X-ray energy-dispersive spectral 

analysis. Nanoscale structural features were detected by the atomic force microscopy (AFM). 

The surface morphology of the samples has been characterized by AFM measurement in tapping 

mode using Ntegra Prima microscope (NT-MDT SI, Russia) with super sharp silicon cantilevers of 

model SSS-NCH (Nanosensors). The resonant frequency of cantilevers is about 330 kHz, the radius at 

the end is 3–5 nm and the stiffness constant is about 35 N/m. The images have been recorded at a scan 

frequency between 0.8 and 1 Hz for a resolution of 512×512 pixels. To reduce the effect of static 

electricity on the images, we increased humidity in the room (relative air humidity of about 85%) and 

grounded the samples. For each sample, we performed at least 5 AFM images with 3–5 different scan 

areas. 

 

Figure 1. Scheme for measuring of the hillock diameter. 
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Method for measuring the size of the objects on the surface. In the majority of the works, the 

surface roughness is used to quantify the objects on AFM images, which is estimated from a standard 

histogram. In this case, we receive the average height of the hillocks. However, the glasses have a 

complex surface relief. It can be characterized by roughness of several orders in the image plane: 

micron-size waves; submicron-size wave; islands of 200–300 nm in diameter, covered by hillocks 

with diameter of the tens of nanometers. Therefore, the measured roughness always possesses several 

levels on natural glasses. Moreover, the comparative analysis is complicated by the influence of 

experimental parameters, such as tip radius, tip-sample force, scan size and pixel resolution. In our 

work we performed measurements of visible linear sizes (diameter) of the contacting hillocks along 

the surface profiles (Fig. 1). Due to the complex surface relief, the bases of the hillocks are positioned, 

as a rule, at the different heights. Therefore, the measurement of diameters was conducted at a half of 

the hillocks height. The height was measured from the average baseline between baselines of hillock 

to peak. Such an approach allows decreasing somehow the object broadening effect on the surface by 

a probe. We measured sizes of 95–120 hillocks for various samples. 

The cleaved surfaces of the samples were studied with a Tescan Vega LMH scanning electron 

microscope with W heated cathode. X-ray energy-dispersive spectrometry (EDS) was used to 

investigate the chemical composition with AZTEC software (Oxford Instruments) processing. 

Raman spectroscopy was carried out with a LabRam HR800 instrument (Horiba, JobinYvon) at 

room temperature. The system was equipped with an Olympus BX41 optical microscope and a Si-

based CCD detector. The spectra were recorded in the 100–4000 cm-1 range using a spectrometer 

grating of 600 g/mm, with a confocal hole of 300 μm and a slit of 100 μm. As an exciting radiation, an 

external Ar+ laser (514.5 nm; 1.2 mW) was used. After background correction, individual lines were 

deconvolved using a curve-fitting procedure from the software provided by LabSpec 5.36. 

3.  Results 

The spectroscopic and X-ray spectral studies allowed establishing the composition of the matrix of 

glasses (Table 1). It can be seen that SiO2 content increases in sequence: volcanic glasses – tektite – 

impactites. On the AFM images the microscopic heterogeneity of the glasses is shown as practically 

isometric rounded hillocks (Fig. 2), which sizes in the image plane are the tens of nanometers. The 

distribution of the hillocks is narrow in size, having a lognormal-like appearance (Fig. 3). The smallest 

average hillock diameters are as follows: for Libyan glass – 21 nm, for irgizite – 26 nm; for moldavite 

– 34 nm. The average hillock diameter for obsidians varies within 55–70 nm. The hillock nature is 

traditionally associated with the nanocrystalline structural features of glasses [9,11]; however, 

published images of high-resolution transmission electron microscopy [15,16] show that atomic 

lattices in natural glasses are disordered, and it is more correctly to explain their appearance by density 

fluctuations or by chemical heterogeneity. The results of X-ray spectral analysis of the glasses are 

given in the Table 1. It can be seen that there is a direct correlation between the hillock size and the 

content of impurities. The more impurities are, the greater the size of the hillocks is. 

Table 1. Composition of the glasses (at. %). 

 
Libyan 

glass 
Irgizite Moldavite 

Obsidian 

(Kamchatka) 

Obsidian 

(Italy) 

Obsidian 

(Armenia) 

O 66.1 65.5 64.2 61.9 60.9 63.3 

Si 33.4 26.5 27.4 24.5 25.5 23.9 

Mg not det. 1.6 1.1 0.9 1.3 0.1 

Al 0.3 4.0 3.9 0.8 0.6 6.6 

Na not det. 0.8 0.3 5.8 7.7 2.5 

K –//– 0.8 1.5 0.2 0.2 2.0 

Ca –//– 0.7 1.0 1.9 3.5 0.3 

Ti –//– 0.2 0.1 not det. not det. 0.1 

Fe 0.1 1.4 0.4 0.1 0.1 0.1 
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Figure 2. Typical AFM images of the surface of natural glasses: (a) Libyan glass; 

(b) irgizite; (c) obsidian (Italy). 

 

Figure 3. Typical measured distribution of hillocks diameter (for moldavite). 

According to IR spectroscopy, three types of vibrations in the SiO2 molecule were revealed in the 

glasses. One vibration is associated with crystal structure, in this case with valence vibrations in the 

quartz molecule. Two others are connected with valence and deformation vibrations in SiO2 structures. 

In our case, a shift of the peak of the valence vibrations of crystalline SiO2 (900–1100 cm-1) toward 

smaller angles is observed: in Libyan glass (1102 cm-1), irgizite (1088 cm-1), moldavite (1085 cm-1), 

and obsidians (1039–1042 cm-1). The absorption bands in this region are typical for all silicate glasses 

and can be attributed to the valence vibrations of silicon and oxygen atoms in the bridge bonds of the 

silicon-oxygen tetrahedron. In the spectra of impactites, the absorption band is bifurcated and 

broadened, which is possibly due to the isomorphous substitution of silicon atoms in the tetrahedron 

for aluminum atoms. For example, it is known that at the partial replacement of Si4+ by Al3+, the 

valence absorption bands shift to low frequencies. The tetrahedral layer is filled by the principle of the 

closest packing, so replacing of Si (with ionic radius 0.39 Å) by Al (0.57 Å) or Na (0.92 Å) increases 

the dimensions of the tetrahedra. Therefore, the shift of this maximum results most likely from the 

complexity of tektite and volcanic glass. We observe dependence of the diameter of the hillocks on the 

surface of the glasses on the position of the given maximum in the IR spectrum (Fig. 4). Taking into 

account the chemical nature of this shift, together with the results of elemental analysis, it is possible 

to assume the chemical nature of nanoscale heterogeneity of glasses. It can be associated with such a 

feature of the formation of glasses from melts, as the accumulation of a glass-forming agent (SiO2) in 

domains surrounded by a melt with a higher content of cation-modifiers, which are usually elements of 

the first and second groups [14]. In our samples, there are Na, Ca, Al, and Mg impurities (table), and 

their content increases from impact glasses to tektites and volcanic glasses. Cations of modifiers are 

located in free cavities of the structural lattice, compensating excessive negative charge of the 

complex anion. The strength of the modifier-oxygen bond is much lower than the strength of the glass-

to-oxygen bond, so the modifiers do not form strong coordination groups, and when the glass breaks, 

the bonds break along the clusters of modifier elements. 



5

1234567890

Scanning Probe Microscopy 2017 (SPM-2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 256 (2017) 012019 doi:10.1088/1757-899X/256/1/012019

 

 

 

Figure 4. Dependence of the displacement of the  (SiO2) band about 1100 cm-1 on 

hillocks diameter. 1 – Libyan Desert glass; 2 – irgizite; 3 – moldavite; 4 – obsidian 

from Kamchatka; 5 – obsidian from Italy; 6 – obsidian from Armenia. 

On the Raman spectra, the structural features of glasses are shown, first of all, in the high-

frequency region 800–1200 cm-1 [14]. The band with a maximum in the region of 800–850 cm-1 is 

related to the valence vibrations of isolated SiO4 tetrahedra, in which all the oxygen atoms are non-

bridging (structural units Q0). The bands with a maximum in the regions 900 cm-1 and 950–980 cm-1 

are conditioned by vibrations of terminal groups in SiO4 tetrahedra, with three and two non-bridging 

oxygen atoms (structural units Q1 and Q2), respectively. The band with a maximum in the range 1050–

1200 cm-1 is associated with valence vibrations of the non-bridging bonds in SiO4 tetrahedra with one 

non-bridging oxygen atom (structural units Q3). In the low-frequency region (400–700 cm-1) there is 

an intense band, the maximum of which shifts toward higher frequencies with increasing degree of 

polymerization of the glass. 

 

Figure 5. Raman spectra of glasses. 
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Our samples show mixed distributions of Qn, and the obsidian spectrum shows the most 3D-

ordered structure (Fig. 5). In their spectra, the largest statistical weight of the structural units Q32 and 

Q33 is recorded. In the spectrum of moldavite, as in obsidians, the band, corresponding to the structural 

unit Q32, is predominant, but this band is not yet so clearly distinguished against the background of the 

remaining bands. In addition, unlike the obsidians, the bands appear, which correspond to the 

structural units Q0, which testifies to the significant number of SiO4-chain breaks and a relatively more 

disordered structure. In irgizite, the band of the structural unit Q22 becomes the predominant one, 

while the essential role of the band Q0 remains, which testifies to the relatively smaller ordering of 

irgizite in comparison with the moldavite. In Libyan glass, the band of the structural unit Q0 becomes 

the dominant band, which testifies to the lowest orderliness of this glass in comparison with the others, 

in particular, to the shortest chains of tetrahedra. 

4.  Conclusion 

According to the results of elemental X-ray spectral analysis and IR spectroscopy, the impact glasses 

(impactites and tektites) have more homogeneous silica matrix with fewer impurities than volcanic 

glasses. The dependence of the saturation degree of the natural glasses structure with cation-modifiers 

(Al, Na, Ca, Mg) on the dimensions of surface inhomogeneities is revealed. It allows relating IR 

spectroscopic and X-ray spectroscopic data with nanostructural glass features. There is the correlation 

between the degree of ordering of the structure (according to the Raman spectroscopy data) and 

content of the impurities in silica glasses. This fact allows suggesting chemical nature of the glass 

nanoheterogeneity obtained by AFM. The presence of impurities, partially framing the nanosized 

regions of the glass-forming matrix, promotes the cleavage along the impurity-containing regions and 

the formation of a rough cleavage surface. 

Acknowledgments 
This work was supported by the RSF (project No. 17-17-01080). The authors thank G.N. Lysyuk for 

providing the samples of impactites and moldavite, and V.A. Radaev for the AFM measurements. 

References 

[1] Henderson G S 2005 The structure of the silicate melts: glass perspective Canadian 

Mineralogist 43 1921-58 

[1] Wünsche C, Rädlein E and Frischat G H 1997 Glass fracture surfaces seen with an atomic force 

microscope Fresenius J. Anal. Chem. 358 349-51 

[2] Raberg W and Wandelt K 1998 Atomically resolved AFM studies of an amorphous barium 

silicate surface Appl. Phys. A 66 S1143-6 

[3] Hervé A and Daniel A 2000 Ten years of atomic force microscopy in glass research Ceramics-

Silikáty 44 121-8 

[4] Poggemann J-F, Goß A, Heide G, Rädlein E and Frischat G H 2001 Direct view of the structure 

of a silica glass surface J. of Non-Crystal Solids 281 221-6 

[5] Dalmas D, Lelarge A and Vandembroucq D 2007 Quantitative AFM analysis of phase separated 

borosilicate glass surfaces J. of Non-Crystal Solids 353 4672-80 

[6] Radlein E and Frischat G H 1997 Atomic force microscopy as a tool to correlate nanostructure 

to properties of glasses J. of Non-Crystal Solids 222 69-82 

[7] Heide G, Müller B, Kloess G, Moseler D and Frischat G H 2003 Structural classification of 

natural non-crystalline silicates J. of Non-Crystal Solids 323 68-71 

[8] Frischat G H, Poggemann J-F and Heide G 2004 Nanostructure and atomic structure of the glass 

seen by atomic force microscopy J. of Non-Crystal Solids 345 197-202 

[9] Gaskell P H 1997 Structure and properties of glasses - how far do we need to go? J. of Non-

Crystal Solids 222 1-12 

[10] Marliere C, Prades S, Celarie F, Dalmas D, Bonamy D, Guillot C and Bouchaud E 2003 Crack 

fronts and damage in the glass at the nanometer scale J. of Phys.: Cond. Matter 15 S2377-86 



7

1234567890

Scanning Probe Microscopy 2017 (SPM-2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 256 (2017) 012019 doi:10.1088/1757-899X/256/1/012019

 

 

[11] Golubev Ye A 2003 Scanning probe microscopy in researches of micro- and nanostructure in 

noncristalline geomaterials Microscopy and Microanalysis 9 304-5 

[12] Golubev Ye A 2005 Supermolecular nanostructurization in natural colloids: scanning probe 

microscopy data J. of Crystal Growth 275 e2357-60 

[13] Anfilogov N N, Bykov N N and Osipov V N 2005 Silicate melts (Moscow: Nauka) (in Russian) 

[14] Gornostaeva T A, Mokhov A V, Kartashov P M and Bogatikov O A 2016 Condensate glasses 

from the Zhamanshin Crater. I. Irghizites Petrology 24 1-20 

[15] Gornostaeva T A, Mokhov A V, Kartashov P M and Bogatikov O A 2017 Condensate glasses 

from the Zhamanshin Crater. II. Zhamanshinites Petrology 25 3-25 


