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Abstract. A novel approach based on sparse representation is presented to investigate the impact 

of weave repeat on the characterization of woven fabric texture. Firstly, the test samples were 

represented by over-complete dictionary in the least squares sense. Secondly, the two indexes--

PSNR value and RMSE were introduced to evaluate the representation performance. Thirdly, 

the image entropy was used to quantify the fabric surface texture, and then the samples were 

categorized according to the two indexes. Experimental results showed that our algorithm can 

approximate fabric texture very well and weave pattern has great impact on fabric texture 

reconstruction. Eight kinds of weaving patterns are classified into three categories, of which the 

basket fabric shows the best performance. The findings may be helpful in classification and 

automatic inspection of woven fabric texture. 

1.  Introduction  

The quality inspection is an essential part of textiles production before sale. Normally, fabric visual 

inspection is performed by workers in most of the production lines. However, these manual operations 

are so subjective and repetitive that a reliable and accurate detection results can hardly be provided, 

because they are easily constrained by external factors such as tiredness, and inattentiveness. With the 

development of image processing and pattern recognition techniques, an automatic visual inspection, 

especially the surface texture representation technique is highly demanded by various industries to 

circumvent the shortcomings of manual inspection for more consistent and objective detection results.  

Image processing methods have been widely applied in fabric texture analysis. Shih [1] proposed an 

automated analysis system for Tatami embroidery fabric images, where the color, pattern shape and 

texture can be automated analysis. For textile image analysis, Pan [2] simulated the woven fabric texture 

and constructed the characteristic model through a simulation method based on the gray level 

distribution of weave floats. Xin[3] presented a fairly new texture modelling method based on co-

occurrence matrix and neural network for objective quality evaluation of fabric appearance. Liu[4] 

combined wavelet transform, generalized Gaussian density (GGD), defect segmentation and learning 

vector quantization (LVQ) neural network to identify 7 types of common defects in silk fabric. Though 

fabric texture is the basis fundamental research, there is no accurate characterization of texture in depth. 

Most researches in this area is mainly focused on their applications, such as weave structure recognition, 

texture classification and defects detection etc. Global texture analysis is still a challenging task in 

different kinds of fields ranging from fabric texture analysis, face recognition, image recognition and 

processing, visual art among others [5].  
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A woven fabric is made of the cross combination of warp and weft yarns according to weaving 

pattern, and it exhibits high periodicity. So, it can be inferred that the global woven fabric texture is 

determined by the factors of yarns, like weaving density and weave repeat. But the relative effects of 

weave structure, yarn type on the characterization fabric texture are not yet known. However studies on 

relationship between weave structure and fabric texture characterization are still rare as there is paucity 

of literature on this relationship. Since the weave pattern of fabric mainly consists of warp and weft yarn 

density, fabric structure, color, the array parameter of dyed yarn san so on[6]. Thus, the present study is 

therefore undertaken to investigate the effect of weave structure on the representation of woven fabric 

texture. 

2.  Methodology  

In recent years, sparse representation works well in many aspects of applications, where the original 

signal y needs to be reconstructed as accurately as possible such as image compression [7], super-

resolution and image de-blurring [8, 9], image de-noising [10, 11], face feature recognition [12]. Recent 

studies have achieved better signal representation using sparse approximation techniques as opposed to 

other methods [13]. For woven fabric texture representation, the implemented algorithm was sparse 

representation, while the used dictionary was over-complete. 

2.1.  Sparse representation  

The aim of sparse signal representation is to find a linear combination with a small number basis vectors 

(named dictionary elements or atoms), which can approximate the signal with a minimal mean squared 

error. Suppose that there is m×n data matrix Y=[y1, y2 ,…, yn], yi∈Rm, which contains n vectors of their 

dimension m in its columns. For approximating every vector yi in Y, we need to find a dictionary that is 

D = [d1, d2, ..., dk], dj∈Rm (k>m)，whose each column includes a basis vector, which can sparsely 

represent all yi in Y. In the proposed approach, the dictionary was predefined, to ensure the 

characterization results stable. 

The problem of seeking such a sparse coefficient matrix could be formulated as follows: 
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Where in  kR is the coefficient vector for yi in Y, here denotes ‖∙‖0 −l0 pseudo-norm, which counts 

the number of non-zero entries of its argument vector. While this problem is, in common, very hard to 

solve, matching pursuiting[14] and basis pursuit[15] algorithms can be used effectively to obtain an 

approximated solution. In this paper, we made use of the orthonormal matching pursuit (OMP), due to 

its simplicity and efficiency.  

A fundamental consideration in employing the above model is the choice of the dictionary D. The 

majority of literation on this topic can be categorized into two approaches: the analytical approach and 

the learning-based means. The analytical dictionary is formulated by a mathematical model or transform. 

This predefined dictionaries generally are highly structured and have a fast numerical 

implementation[13]. Dictionaries of this type contain Curvelet[5], Bandelet[16], Discreet Cosine 

Transform DCT[17], and so on. The classical learned dictionary includes K-means Singular Value 

Decomposition KSVD[18], Double Sparse Modeling, DSM[13], and others. 

2.2.  Woven fabric texture characterization 

Since the sparse representation can be seen as an approximation process, it can be applied to the field of 

image reconstruction. Thus, the woven fabric image characterization problem (1) can be solved by 

setting a threshold of average residual error ε: 
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To find the optimal ̂ , the OMP algorithm was adopted to obtain sparse coefficient matrix. However, 

as the large calculation costs of the sparse decomposition, and the calculation a whole is too huge. Thus, 

the approach of limited in handling small image blocks was to solve equation (2) in this context. The 

characterization process is shown as follows:  

(1) Extract the 8×8 image patch from the image samples with overlaps. 

(2) The dictionary is redundant DCT, the redundant of DCT is 4, and namely, it contains 256 atoms. 

(3) Decompose and reconstruct all overlapping image patches based on the DCT dictionary. The 

appropriate sparsity value T is chosen to control the average error. 

(4) For every reconstructed image patch, we replace the pixels in the overlapping region by the average. 

3.  Experiments  

To study the impact of weave pattern on fabric texture representation, eight weave patterns were chosen, 

which involved 3/1 twill, plain, 2/2 basket, 8/3satin, 8/5 satin, diamond twill, honeycomb and compound 

twill (see figure 1 (a) to (h)). All the samples were manufactured on TNY101B-20 type Sakural brand 

rapier loom. The material was 20tex/2 cotton two fold yarn used both in warp and weft. The woven 

density was 350yarns/cm for both weft and warp. The size of image samples was 256 256 pixels with 

256-grey levels, and original fabric samples are shown in figure 1. 

 

Figure 1. Original fabric samples (a) twill, (b) plain, (c) basket, (d) weft satin, (e) warp satin, (f) 

diamond twill, (g) honeycomb, (h) compound twill 

3.1.  Evaluation of the representation result 

Objectively, we adopted peak signal to noise ratio (PSNR) and root mean square error (RMSE) to 

confirm the performance of our method. PSNR can be seen as a metric to measure the quality of the 

reconstructed image, and its definition is given as follows: 
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In this expression, I is gray scale image, MAXI is the maximum gray value 255, 𝐼  is the 

approximated image, and ||· || F is F- norm. From the equation (3), it is obvious that PSNR is a positive 

number, and when the original image and the reconstructed image is approximately the closer, the 

greater the PSNR value.  
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Here, X is gray scale image with m samples in n dimension, X̂ is the approximated image. 
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What is more, to validate the influence of weave repeat on fabric texture characterization, the image 

entropy was computed to quantify the average amount of information in an image. One dimensional 

image entropy shows the amount of information contained in the aggregation feature of gray level 

distribution, which the definition is shown as follows:  

255
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The pi is the proportion of the pixels whose gray value is i. 

4.  Results and Discussion  

In this article, the offered algorithm is devised to represent texture in a fully unsupervised manner 

without any prior information. It attempts to represent fabric texture in patch-level with an over-

complete dictionary in sense of least squared error. And then the influence of weave structure on woven 

fabric texture representation is investigated. 

4.1.  Effect of the sparsity T and dictionary size 

The three foundation weave patterns--plain, twill and satin (see sample 2, 1, 5 in figure 1) samples were 

chosen to select the appropriate T and dictionary size. Their reconstructed versions are illustrated in 

figure 2. It can be obtained that there was no visual difference between original image and the 

reconstructed one. From the figure 3, the quality of the images is improving (PSNR value becomes 

higher and the RMSE turns smaller) with the sparsity T and dictionary atom, but this increase is 

subsiding. About PSNR, at T=30, the proposed method can approximate the fabric samples very well. 

Setting T>30, though the PSNR becomes larger, it may bring more computation burden and little 

difference in vision. For RMSE, the improvement performance gradually weakens and the curve turns 

convergence at T=60. Finally, we set T=30, which can make sure that PSNR value and RMSE of the 

samples are around 60dB and about 2.5 respectively. The characterization performance reaches better 

than the other elements, when the dictionary atom is 256, still keeping the dictionary is over-complete. 

So, the dictionary atom is 256. 

 

 

Figure 2. The reconstructed fabric image samples (a) plain, (b) twill, (c) weft satin 

4.2.  The impact of diverse of weave repeat  

At present, we explore the difference of fabric surface texture with different structure parameters. The 

image entropy was calculated, and shown in table 1, which implies that the lager of the entropy value, 

the more complex the image surface texture. In order of most complex samples, it goes: twill, 

honeycomb, plain, basket, compound twill, diamond twill, warp satin and weft satin. The final 

characterization results have not quite the same outcomes because the every weave pattern has different 

organizational structures and regularity. 
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Table 1. The result of fabric image samples 

Sample Entropy PSNR(dB) RMSE 

1 6.4262 
 

57.9233 
 

2.5652 
 

2 6.2103 
 

61.2406 
 

1.8598 
 

3 6.1706 
 

63.9147 
 

1.4171 
 

4 6.0183 
 

58.8866 
 

2.2507 
 

5 6.0046 
 

60.3060 
 

1.9409 
 

6 6.0145 
 

61.1927 
 

1.1801 
 

7 6.2447 
 

61.8670 
 

1.6544 
 

8 6.1578 
 

57.4385 
 

2.7603 
 

 

 

Figure 3. Illustration of the results with different T and dictionary size 

 

From the table 1, we achieve that the performance results are categorized into three types, with the 

quality of the assessment getting worse. The surface texture of basket fabric sample is not the simplest, 

even a little complex. Owing to the effect of structure feature and best regularity among the text samples, 
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the basket fabric sample had the greatest performance. The honeycomb, diamond twill, plain and weft 

satin samples were after the basket, which the smallest gap between the two groups is 2.1dB and 1.1, 

while the difference within their group is about 1dB and 0.8. Comparison with the other groups, the 

third group had the worst performance, which contains warp satin, twill, compound twill. 

5.  Conclusion 

We propose an algorithm for fabric texture characterization based on sparse representation using DCT 

over-complete dictionary. Although the dictionary was predefined, it can effectively capture key 

features in the samples and obtain stable characterization result. Besides, experimental results 

demonstrated that different weave patterns can be approximated very well. From the perspective of the 

quantitative analysis, the fabric samples were classified into three categories in relation to the test results 

of PSNR and RMSE. Of which, the basket fabric sample has best performance. As stated by the above 

description, we can infer that the weave repeat has great impact on the regularity of fabric surface texture, 

and even can partly neglect the entropy value, which implies the complex of surface texture. In real, the 

woven fabric texture analysis remains a longstanding challenge from theory to application, no matter 

the texture definition or the woven fabric structural parameters such as materials, fabric compactness 

etc. or other factors, are not adequately explored. For future work, we will aim to find a discriminative 

dictionary, and extract more features to classify the woven fabric texture. 
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