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Abstract. Fused deposition modelling (FDM) technology was investigated in order to produce 

a part designed to support a test load without permanent deformation.  A topology optimization 

script was developed in order to define the final shape of the part. The solver used for the 

numerical analysis is LS-Dyna (implicit formulation). The algorithm follows the element 

removal based on the stress state and it can be very simply implemented. This solution of 

developing a custom code was adopted because plastic strain state was monitored and this is 

not yet implemented in other topology optimization applications. The results of the traction test 

were assembled and investigated in order to outline some of the typical parameters used for 

mechanical characterization. As a general overview of the results it was found that the parts 

manufactured using a 45°/45° stacking configuration are stronger that the ones manufactured 

using 0°/90° stacking configuration. 

1.  Introduction  

Rapid prototyping consists in technologies capable to manufacture complex part in a short period of 

time. Without considering the costs related to infrastructure the parts are less expensive compared to 

the ones manufactured using conventional technologies. Another important aspect is that parts with 

internal voids can be manufacture. 

Among the 3D printing technologies plays an important role [1] and plays an important role. Fused 

deposition modelling (FDM) [2] is one technique of rapid prototyping based of 3D printing that uses 

an extruded plastic wire in order to form complex part. The materials used to form the parts are similar 

to some currently used in injection molding technology [3]. 

Ahn et al. [4] investigated ABS P400 material as used for injection moulded parts and for parts 

manufactured using Fused Deposition Modelling. The influence of the raster orientation and the gap 

between two adjacent paths were identified as the major parameters that influence the mechanical 

performances of the parts manufactured using Rapid Prototyping techniques. A set of rules are 

outlined to conclude their work and provides a valuable start point in designing parts to be 

manufactures using FDM. 

Also the work of Dawoud et al. [5] is focused on study of the mechanical behaviour of ABS. The 

raster angle and the gap are also in this case the main parameters associated with the manufactures 

parts. The printing process parameters were not altered from one part to other. It was found that using 

a negative gap can increase both traction and flexural performances of the part (up to -12% in 

performance compared to injection moulded specimens). The differences are explained also by the 
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structure of the material - injection moulding allows the formation of crystals while FDM results in an 

amorphous (yet less strong) structure.  

Garg and Bhattacharya propose in their work [6] a numerical model that in capable to accurately 

describe by the mean of finite elements method the behave of structures under tensile loading. The 

method is applied to investigate specific specimens for tensile test. Results show a good agreement 

between the experiment and simulation results. The study completes the knowledge in the field 

showing that the strongest parts are obtained when the part is aligned with the building plane. 

A study on the build parameters in case of fused deposition modelling developed by Griffiths et al. 

[7] points that the infill level and number of shells plays an important role when the improvement of 

mechanical properties of parts is addressed. 

2.  Investigation of the mechanical properties  

In order to investigate the mechanical properties of ABS a number of samples were manufactured 

using MakerBoot Experimental 2X printer that used Fused Deposition Modelling technology for rapid 

prototyping. The specimens were tested in traction using a universal testing machine. The tests were 

performed according to the prescriptions of ASTM D 638.  

 

  

  

  
a) b) 

Figure 1. Analysis results of the tensile tests. 

a) overall results – stress yield/ultimate; b) overall results – strain yield / ultimate; 
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The results of the traction test were assembled and investigated in order to outline some of the 

typical parameters used for mechanical characterization. As a general overview of the results it was 

found, as expected and also supported by literature [5], that the parts manufactured using a 45°/45° 

stacking configuration are stronger [8] that the ones manufactured using  0°/90° stacking configuration 

(Figure 1 a)). 
In case of a 45°/45° configuration, Figure 1 c) show that increasing the layer thickness the strength 

of the part increases. However the increase of the layer thickness results in a decrease of the strain as 

resulting from Figure 1 d). A smaller layer thickness gives a more compact construction yet the raw 

material might be affected during extruding thus the mechanical properties altered. This gives the 

small decrease in strength. The higher value of the stress is recorded for a layer thickness of .3 mm 

close to the optimal value recommended for the 3D printer. 

For the 0°/90° there is a similar pattern. The stress increases with the increase of the layer thickness 

(Figure 1 e)) while the strain decreases (Figure 1 f))  

The fractured sections of the parts are presented in Figure 2. Figure 2 a) presents the cross section 

of the 45°/45° sample with a layer thickness of 0.2. The section shows some small voids on the edge 

(contour section). The voids [9] can also be explained by the standard configuration with a null gap. 

Figure 2 b) presents the cross section of the 0°/90° sample with a layer thickness of 0.4. The previous 

observations are also valid.  

 

  
a) 0.2 mm - 45°/45° b) 0.2 mm - 0°/90° 

  
c) 0.4 mm - 45°/45° d) 0.4 mm - 0°/90° 

Figure 2. SEM images of the fractured section. 

 
In the case of 45°/45° parts there is a similar pattern for the fractured section as presented in Figure 

2 a), c). It worth mentioning that there is predominant direction for the failure of the material. 

However the part with a layer thickness of 0.4 mm displays more voids. The stress is lower because 

the number of longitudinal filaments. 
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Figure 3 a) displays the fracture pattern for a part with 0.3 mm layer thickness and a stacking 

sequence of 45°/-45°. It shows that the 45° and -45° filaments fused together. Figure 3 a) displays the 

fracture pattern for a part with a stacking sequence of 0°/-90°.  The layers fused together. The failure is 

produced staring from the transverse filament followed by the failure of the longitudinal one.  

 

  
a) 0.3 mm - 45°/-45° b) 0.3 mm - 0°/90° 

Figure 3. SEM images of the fractured section (details for the 0.3 mm layer thickness). 

 

In order to provide an input for the design of part, Figure 4 presents typical stress – strain curves 

for the ABS material. Data presented follow the results of the analysis presented in Figure 1.  

 

  
45°/-45° stacking sequence 0°/90° stacking sequence 

Figure 4. Stress strain data for ABS. 

 

Although literature displays for ABS values of the Young Modulus of 1950-2000 MPa the present 

study reports values between 1000-1100 MPa. For design purposes of the parts a value of 1050 MPa 

was recommended. Poisson’s coefficient must be considered according to literature thus a value of 

0.36 can be used.  

3.  Part design 

A sample part is designed in order to support a load of 1500 N without permanent deformation. The 

part is considered to be clamped at the bottom supports and the load is applied at mid-span.  
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A topology optimization [10–12] script was developed in order to define the final shape of the part. 

The solver used for the numerical analysis [6] is LS-Dyna (implicit formulation). The algorithm 

follows the element removal based on the stress state and it can be very simply implemented. This 

solution of developing a custom code was adopted because plastic strain state was monitored and this 

is not yet implemented in other topology optimization applications.  

The input data are obtained from the AVS database by *DATABASE_AVSFLT card in an ASCII 

format. The values reported are stress tensor components and the plastic strain. 

For each step a stress value is imposed thus the elements with an associated value below that 

minimum are removed from the model. The function giving the threshold value can be adapted to 

different situations by the selection of the exponent parameter       . The exponent should be 

selected according to each application as a function of the model size, load configuration, load 

magnitude and support configuration. For the current model a "conservative" exponent was selected 

(5.0). Additional parameters like nodal or rigid displacement can be imposed as termination criteria.  
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Figure 5. Optimization parameters. 

 
The initial design domain (displayed in yellow) is presented in Figure 6 (step 1). It can be noticed 

that given the value of the        for the first steps the shape of the part doesn't change too much. The 

final steps defined the actual shape of the part. Considering 20 iterations the plastic strain limit was 

reached at iteration 15 thus the final shape of the part is the one obtained for step 14.    

 

   
step 1 …step 8 …step 12 

   
step 13 step 14 step 15 

Figure 6. Optimization solution. 
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It should be mentioned that the section displayed in green and brown are add-on features intended 

to fix the part and to load it. 

Considering the geometrical solution obtained after the optimization the part was printed using 

MakerBoot Experimental 2X printer. Figure 7 presents the outline of the part that it was designed 

following the optimization solution. Details on the printing pattern are provided for the narrow 

sections of the model. 

 

 

 

Figure 7. Outline of the part and details on the printing pattern. 

4.  Experimental investigation 

The finished part was fitted on the universal testing machine using a custom 3 points bending fixture. 

The bottom left and right end were clamped while the load was applied on top of the part. The loading 

configuration if presented in Figure 8a). 

 

 

 
b) 

 

c) 

 
a) d) 

Figure 8. Experimental analysis of the part. 

a) loading configuration; c)-d) image processing procedure. 

 

The top displacement was recorded using the machine equipment. In order to improve the reading 

of the results and to obtain results for a complex deformation analysis a number of high resolution 

markers were added on the part.  
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Using digital camera, images of the part during loading were captured. Figure 8b) presents the first 

step of the video analysis. The colour image was processed to grey. Using edge-detection the positions 

of the markers were identified as presented in Figure 8c). Considering the circular shape the centre of 

each marker was identified (Figure 8d)) and the coordinates were saved to a data file. 

The markers located at the bottom of the machine were used as a reference in order to eliminate the 

motion of the camera during shooting. Considering the first recorded frame fixed the subsequent 

positions of the markers located on the machine were corrected. This was the actual deformed shape of 

the part can be determined. 

Figure 9 present the positions of the markers during loading process. The initial state, final state 

and intermediary positions can be identified. This way there is a good traceability of each point and 

the global deformation can be correlated with local values. 

 

Figure 9. Deformation history of the part. 

Figure 10 presents a comparison of the results as obtained from simulation and experiment. Overall 

there is a good agreement between the two sets of results. The nonlinear behaviour of the part as 

obtained from the experiment can be explained by the existence of friction between the mechanical 

parts. 

 

Figure 10. Displacement of the part at loading point. 

 
The part is just a little bit stiffer than it was estimated by the model. This is considered acceptable 

as the numerical models should be considered conservative in order not to overestimate of to 

overcome some characteristics of the real model. 
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5.  Conclusions 

 

The present paper gives a brief description over the design and analysis process of a fused deposition 

modelling manufactured part. 

The process debuted with the examination of the mechanical properties of the material. A number 

of specimens were manufactured and tested using a universal testing machine. Considering the number 

of parameters that can be controlled, the influences of stacking and layer thickness over the 

mechanical properties were investigated. 

Once a global mechanical model was defined a part was constructed. The construction of the part is 

the results of an optimization process using numerical simulation by the finite elements method.  

The part was finished using computer aided design and finally manufactured with a 3D printer. 

In order to evaluate the performances a three-point bending experiment was developed. Image 

analysis was employed in order to enhance the results from the experimental analysis. 

A good agreement was obtained between results from the numerical analysis and simulation. The 

small differences (showing a stiffer printed model) can be explained by the use of filleting radii that 

enhances flow stress. Nonlinearities can be explained by the existence of friction of the mechanical 

components of the testing equipment.   

  

References 

[1]  Schniederjans D G 2017 Adoption of 3D-printing technologies in manufacturing: A survey 

analysis Int. J. Prod. Econ. 183 287–98 

[2]  Thompson M K, Moroni G, Vaneker T, Fadel G, Campbell R I, Gibson I, Bernard A, Schulz J, 

Graf P, Ahuja B and Martina F 2016 Design for Additive Manufacturing: Trends, 

opportunities, considerations, and constraints CIRP Ann. - Manuf. Technol. 65 737–60 

[3]  Carneiro O S, Silva A F and Gomes R 2015 Fused deposition modeling with polypropylene 

Mater. Des. 83 768–76 

[4]  Ahn S, Montero M, Odell D, Roundy S and Wright P K 2002 Anisotropic material properties 

of fused deposition modeling ABS Rapid Prototyp. J. 8 248–57 

[5]  Dawoud M, Taha I and Ebeid S J 2016 Mechanical behaviour of ABS: An experimental study 

using FDM and injection moulding techniques J. Manuf. Process. 21 39–45 

[6]  Garg A and Bhattacharya A 2016 An Insight to the Failure of FDM Parts under Tensile 

Loading: Finite Element Analysis and Experimental Study Int. J. Mech. Sci. 

[7]  Griffiths C A, Howarth J, Rowbotham G D A and Rees A 2016 Effect of Build Parameters on 

Processing Efficiency and Material Performance in Fused Deposition Modelling Procedia 

CIRP 49 28–32 

[8]  Zaldivar R J J, Witkin D B B, McLouth T, Patel D N N, Schmitt K and Nokes J P P 2017 

Influence of processing and orientation print effects on the mechanical and thermal behavior of 

3D-Printed ULTEM 9085 Material Addit. Manuf. 13 71–80 

[9]  Mohamed O A, Masood S H and Bhowmik J L 2017 Characterization and dynamic 

mechanical analysis of PC-ABS material processed by fused deposition modelling: An 

investigation through I-optimal response surface methodology Meas. J. Int. Meas. Confed. 107 

128–41 

[10]  Gardan N and Schneider A 2015 Topological optimization of internal patterns and support in 

additive manufacturing J. Manuf. Syst. 37 417–25 

[11]  Langelaar M 2016 Topology optimization of 3D self-supporting structures for additive 

manufacturing Addit. Manuf. 12 60–70 

[12]  Rezaie R, Badrossamay M, Ghaie A and Moosavi H 2013 Topology optimization for fused 

deposition modeling process Procedia CIRP 6 521–6 

 


