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Abstract. Experimental and numerical methods to identify the linear viscoelastic properties of 

flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on 

the evolution of storage modulus and loss factor as observed through the frequency response. 

Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz 

with a swept sine excitation focused around their first modes. A fractional derivative Zener 

model has been identified to predict the complex moduli. A modified ply constitutive law has 

been then implemented in a classical laminates theory calculation (CLT) routine. 

1.  Introduction 

Structural parts of vehicles are submitted to dynamic loading. Excitations coming from the powertrain, 

road surfaces and aerodynamic flows cause mechanical vibrations. In order to improve the acoustical 

and vibrational comfort, natural fibre reinforced polymer composites, exhibiting interesting dissipative 

properties, can be used. Indeed, compared to conventional composite materials, the damping 

performance of flax fibre reinforced polymer (FFRP) can be respectively twice or three times higher 

than that of glass or carbon fibre reinforced polymer composites [1,2]. 

Damping in undamaged composite materials is induced by several microscopic level mechanisms, such 

as viscoelastic elongation of the matrix and/or fibres, friction between both components at their 

interfaces. Moreover, in the particular case of natural fibre reinforced polymer composites, the friction 

between fibres inside bundles can also increase this phenomenon. 

In order to assess the damping within materials, vibration techniques have the advantage of rapidly 

exploring a wide range of frequencies (10 Hz to 1 kHz). Thus, many authors have studied the frequency 

dependence of composite materials [3,4,5,6] 

The frequency dependence is a typical feature of viscoelastic materials. This dependence induces 

variations of the complex moduli when the frequency of excitation changes. In order to assess these 

variations, it is necessary to understand the material constitutive equations that relate the stresses to the 

strains with respect to time or frequency [7], with the help of the linear viscoelasticity theory. These 

relations are expressed by linear differential equations or convolution integrals. They have the main 

benefit of being expressed both in frequency and time domains. 

The present study aims at presenting a method dedicated to the identification of the evolution of 

complex moduli of FFRP laminates on a large frequency band with the help of a fractional derivative 

Zener model. This identification has been done thanks to experimental tests on a specific device, 

between 10 Hz and 4 kHz. 
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2.  Linear viscoelastic model 

Materials submitted to mechanical loading store energy by elastic deformation. For purely elastic 

materials, this energy is totally and immediately returned during the unloading phase. However, in the 

case of viscoelastic materials, the energy stored is completely returned but with some delay due to inner 

rearrangements. For such materials the stress depends on the strain history [7]. Several models 

describing the behaviour of a viscoelastic material in the structural dynamic domain are available in the 

literature. Among them, the fractional derivative Zener model (Fig. 1) has been used by many authors 

to describe the viscoelastic behaviour. This model is mathematically described in Eq. 1, where 𝜎(𝑡), 

𝜀(𝑡), 𝜏, α  are respectively the stress and strain as a function of time, the relaxation time and the α-order 

fractional derivative coefficient (0 < α < 1).  𝐷𝛼[•] is an α-order fractional derivative operator. The 

mechanical stiffness 𝐸0 and 𝐸∞ are respectively the dynamic modulus at very low frequency and at high 

frequency. The fractional derivative model is described in Fig. 1. 

 
Figure 1.  Fractional derivative Zener model. 

 

𝜎(𝑡) + 𝜏𝛼𝐷𝛼[𝜎(𝑡)] = 𝐸0𝜀(𝑡) + 𝐸∞ τ𝛼𝐷𝛼[𝜀(𝑡)]     (1) 

 

In the case of a steady state harmonic excitation, the complex modulus (𝐸∗)is derived from Eq. 1, 

where the fractional derivative operator  𝐷𝛼[•] is replaced by a multiplication by (𝑗𝜔)𝛼. j is the 

imaginary unit and 𝜔𝑛 = 𝜔𝜏. 

𝐸∗(𝜔) =
𝜎∗(𝜔)

𝜀∗(𝜔)
=

𝐸0+𝐸∞ (𝑗𝜔𝑛)𝛼

1+(𝑗𝜔𝑛)𝛼        (2) 

Thus, it is possible to write Eq. 2 in the form of Eq. 3, in which 𝜂(𝜔) = 𝐸′′(𝜔)/𝐸′(𝜔) represents 

the material’s loss factor. The real part 𝐸′(𝜔) of (𝐸∗) represents the elastic behaviour of the tested 

material. It is the storage modulus while the imaginary part 𝐸′′(𝜔) or loss modulus represents the 

viscous or damping behavior of the material.  

𝐸∗(𝜔) = 𝐸′(𝜔) + 𝑗𝐸′′(𝜔) = 𝐸′(𝜔)[1 + 𝑗𝜂(𝜔)]     (3) 

Using the constitutive equation (Eq. 1), 𝐸′(𝜔) and 𝜂(𝜔) can be expressed by Eqs. 4 and 5, where 

𝑐 = 𝐸∞/𝐸0. : 

 

𝐸′(𝜔) = 𝐸0
1+(𝑐+1) cos(𝛼𝜋/2)𝜔𝑛

𝛼+𝑐𝜔𝑛
2𝛼

1+2 cos(𝛼𝜋/2)𝜔𝑛
𝛼+𝜔𝑛

2𝛼        (4) 

𝜂(𝜔) =
(𝑐−1) sin(𝛼𝜋/2) 𝜔𝑛

𝛼

1+(𝑐+1) cos(𝛼𝜋/2)𝜔𝑛
𝛼+𝑐𝜔𝑛

2𝛼       (5) 

 

3.  Classical laminate theory applied to viscoelasticity  

With the help of the individual properties of each ply, the CLT allows one to compute the 

elastic properties of a stack of unidirectional (UD) composite plies (i.e. longitudinal and transverse 

storage moduli, Poisson’s ratios and shear moduli). In order to establish a viscoelastic version of CLT, 

the so-called correspondence principle has been used. Initially introduced on homogeneous materials, 

this principle has been extended to heterogeneous and composite materials by Hashin [9]. In the case 

of a sinusoidal steady-state excitation, it is possible to measure and replace the elastic properties by the 

appropriate complex ones, i.e. the conversion of the elastic solutions to viscoelastic ones. Thus, the 

laminate’s relations derived from the CLT can be used to predict the overall viscoelastic moduli of the 
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laminate from the elementary ply properties. According to the elastic CLT method, the complex 

constitutive relation linking forces (N*) and bending moments (M*) to strains (ε*) and membrane 

curvatures (κ*) can be expressed by Eq. 6. 

 

[
𝑁∗(𝜔)
𝑀∗(𝜔)

] = [
𝐴∗(𝜔) 𝐵∗(𝜔)
𝐵∗(𝜔) 𝐷∗(𝜔)

] [
𝜀∗(𝜔)
𝜅∗(𝜔)

] (6) 

The complex laminate stiffness matrices [ABD]* are given by Eqs. 7 to 9, based on the complex 

reduced stiffness matrix [𝑄̃𝑖𝑗
∗ (𝜔)], where hn represents the position of the nth ply in the thickness of the 

laminate and N is the total number of plies (Fig. 2). 

𝐴𝑖𝑗
∗ = 𝐴𝑖𝑗

′ + 𝑗𝐴𝑖𝑗
′′ = ∑ [𝑄̃𝑖𝑗

∗ ]
𝑛

(ℎ𝑛 − ℎ𝑛−1)𝑁
𝑛=1  (7) 

𝐵𝑖𝑗
∗ = 𝐵𝑖𝑗

′ + 𝑗𝐵𝑖𝑗
′′ =

1

2
∑ [𝑄̃𝑖𝑗

∗ ]
𝑛

(ℎ𝑛
2 − ℎ𝑛−1

2 )𝑁
𝑛=1  (8) 

𝐷𝑖𝑗
∗ = 𝐷𝑖𝑗

′ + 𝑗𝐷𝑖𝑗
′′ =

1

3
∑ [𝑄̃𝑖𝑗

∗ ]
𝑛

(ℎ𝑛
3 − ℎ𝑛−1

3 )𝑁
𝑛=1  (9) 

The 𝑛𝑡ℎ layer in which plies are oriented with an angle (𝛼𝑛) with respect to the loading direction, 

the coefficients [𝑄̃𝑖𝑗
∗ ]

𝑛
are obtained from [Q11

∗ (𝜔)]𝑛 using Eqs. 10 to 15, where 𝑝𝑛 = cosα𝑛 and 𝑞𝑛 =

sinα𝑛. The [Q11
∗ ]𝑛 are the complex reduced stiffness. 

 

[𝑄̃11
∗ ]

𝑛
= [Q11

∗ ]𝑛𝑝𝑛
4 + [Q22

∗ ]𝑛𝑞𝑛
4 + 2([Q12

∗ ]𝑛 + 2[Q66
∗ ]𝑛)𝑝𝑛

2𝑞𝑛
2 (10) 

[𝑄̃12
∗ ]

𝑛
= ([Q11

∗ ]𝑛 + [Q22
∗ ]𝑛 − 4[Q66

∗ ]𝑛)𝑝𝑛
2𝑞𝑛

2 + [Q12
∗ ]𝑛(𝑝𝑛

4 + 𝑞𝑛
4) (11) 

[𝑄̃16
∗ ]

𝑛
= ([Q11

∗ ]𝑛 − [Q12
∗ ]𝑛 − 2[Q66

∗ ]𝑛)𝑝𝑛
3𝑞𝑛 + ([Q12

∗ ]𝑛 − [Q22
∗ ]𝑛 − 2[Q66

∗ ]𝑛)𝑝𝑛𝑞𝑛
3  (12) 

[𝑄̃22
∗ ]

𝑛
= [𝑄11

∗ ]𝑛𝑞𝑛
4 + [𝑄22

∗ ]𝑛𝑝𝑛
4 + 2([𝑄12

∗ ]𝑛 + 2[𝑄66
∗ ]𝑛)𝑝𝑛

2𝑞𝑛
2 (13)  

[𝑄̃26
∗ ]

𝑛
= ([𝑄11

∗ ]𝑛 − [𝑄12
∗ ]𝑛 − 2[𝑄66

∗ ]𝑛)𝑝𝑛𝑞𝑛
3 + ([𝑄12

∗ ]𝑛 − [𝑄22
∗ ]𝑛 − 2[𝑄66

∗ ]𝑛)𝑝𝑛
3𝑞𝑛 (14) 

[𝑄̃66
∗ ]

𝑛
= ([𝑄11

∗ ]𝑛 + [𝑄22
∗ ]𝑛 − 2([𝑄16

∗ ]𝑛 + [𝑄66
∗ ]𝑛))𝑝𝑛

2𝑞𝑛
2 + [𝑄66

∗ ]𝑛(𝑝𝑛
4 + 𝑞𝑛

4)   (15) 

For each of the n layers, the 𝑄𝑖𝑗
∗  are determined in the principal directions of the UD layer based 

on the engineer’s moduli (Eqs. 16 to 19). 𝐸𝐿
′  and 𝐸𝑇

′  represent, respectively, the storage moduli in the 

fibres and the transverse directions of the elementary ply. 𝜂𝐿 and 𝜂𝑇 are longitudinal and transverse 

loss factors. 𝐺𝐿𝑇
′  is the ply shear modulus. 𝜈𝐿𝑇 and 𝜈𝑇𝐿  are its Poisson's ratios. 

 

𝑄11
∗ (𝜔) =

𝐸𝐿
∗(𝜔)

1−𝜈𝑇𝐿𝜈𝐿𝑇
=

𝐸𝐿
′(𝜔)[1+𝑗𝜂𝐿(𝜔)]

1−𝜈𝑇𝐿𝜈𝐿𝑇
 (16) 

𝑄22
∗ (𝜔) =

𝐸𝑇
∗ (𝜔)

1−𝜈𝑇𝐿𝜈𝐿𝑇
=

𝐸𝑇
′ (𝜔)[1+𝑗𝜂𝑇(𝜔)]

1−𝜈𝑇𝐿𝜈𝐿𝑇
 (17) 
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𝑄12
∗ (𝜔) =

𝜈𝐿𝑇𝐸𝑇
∗ (𝜔)

1−𝜈𝑇𝐿𝜈𝐿𝑇
=

𝜈𝐿𝑇𝐸𝑇
′ (𝜔)[1+𝑗𝜂𝑇(𝜔)]

1−𝜈𝑇𝐿𝜈𝐿𝑇
 (18) 

𝑄66
∗ (𝜔) = 𝐺𝐿𝑇

∗ (𝑤) = 𝐺𝐿𝑇
′ (𝑤)[1 + 𝑗𝜂𝐿𝑇(𝑤)] (19) 

Thus, the effective bending stiffness and the loss factor of a composite cantilever beam are 

given by relations 20 and 21. D11
∗−1 represents the first element of the inverse of matrix [D] defined by 

Eq. 20. 

E∗(𝜔) =
12

h3D11
∗−1(𝜔)

= 𝐸′ + 𝑗𝐸′′ (20) 

𝜂(𝜔) =
𝐸′′(𝜔)

𝐸′(𝜔)
        (21) 

 
Figure 2. Laminate’s Architecture representation 

4.  Experimental method 

Materials and specimens  

The FFRE specimens used were made of the Hermès variety of flax cultivated in northern France. A 

commercial dry roll of unidirectional (UD) flax fabric was supplied by BioRenforts, a local textile 

company. The fabric consisted of aligned flax UD fibres stitched by a cotton thread, without any 

treatment. The matrix was an epoxy system based on the resin SR 8200 with the SR 8205 hardener 

provided by SICOMIN. Fibre layers were first cut from the roll and manually impregnated with the 

liquid matrix. The plies were hand-laid, before being stacked under a pressure of 7 bars in a hydraulic 

press equipped with heating plates.  

Slender composite specimens made of four layers, i.e. [0]4, [90]4, [±45]s and [±60]s with a thickness 

(t) of 1 mm, a width (b) of 10 mm and a free length (L) of 170 mm, were cut out from laminated plates 

with a high speed rotating grinding disk. 



5

1234567890

CAR-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 252 (2017) 012049 doi:10.1088/1757-899X/252/1/012049

 

 

 

 

 

 

 
Figure 3. Schematic diagram of the specimen and test set-up. 

 

The test apparatus is shown on Fig. 3. A PCB© accelerometer was fixed to the end of the shaft of the 

shaker, at point 𝑀1, in order to measure the acceleration  (𝑎(𝑀1)) imposed to the sample. Then, the 

vibration velocity (𝑣(𝑀2)) of the free end of the beam, at point 𝑀2, was measured by a vibrometre 

sensor head Polytec-OFV-503 coupled to a controller unit Polytec-OFV-500, via a mirror inclined at 

45° above 𝑀2 allowing the laser signal to enter in the chamber through a small transparent window. A 

real-time signal analyser Pulse LabShop-B&K© gave the frequency response function (𝐻(𝜔)) between 

𝑣(𝑀2) and 𝑎(𝑀1) (Eq. 22).  

The storage modulus (𝐸′(𝜔𝑖)) is computed from the beam theory (Eq. 23). The loss factor (𝜂(𝜔𝑖)) 

has been calculated by the “-3 dB bandwidth” method, in the vicinity of 𝜔𝑖
2. 

(𝜔) =
 𝑣(𝑀2)

𝑎(𝑀1)
         (22) 

𝐸′(𝜔𝑖) =
12𝜌𝐿4

𝑋𝑛
2ℎ2 𝜔𝑖

2        (23) 

5.  Results and discussion 

5.1.  Material properties identification  

The linear viscoelastic Zener’s parameters (𝜏, α, 𝐸0 and 𝐸∞) have been identified for [0]4 and [90]4 

using Eqs. 4 and 5 in an iterative procedure minimizing the error between the experimental data and the 

theoretical values. The results of the identification are given in Table 1. 

 

Table 1. Optimal parameters of Zener model for 𝐸𝐿
∗ and 𝐸𝑇

∗  laminates. 

 

𝐸0 

(GPa) 

𝐸∞ 

(GPa) 

𝜏 

(s) 

𝛼 

 

 [0]4 19.2 20.7 1.59 ×10-5 0.422 

[90]4 5.03 5.63 1.59 ×10-5 0.422 

 

Experimental data with standard deviations and Zener model curves for [0]4 and [90]4 laminates are 

plotted on Figure 4. The analytical calculation of the moduli and loss factors show good agreement with 

the test measurements, despite the inherent scattering of the properties of fibres. The measured moduli 

increased with the frequency of 10 and 17% on average, respectively for [0]4 and [90]4 laminates in the 

bandwidth (Figure 4a). The loss factors exhibited important increase with a non-linear trend of 22 and 

20% on average, respectively for [0]4 and [90]4 samples (Figure 4b).. Conversely, 𝜂 was dependent on 
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frequency. Despite the inherent scattering of plant fibres, the analytical predictions show good 

agreement with the test measurements. Thus, the Zener model was assumed to be relevant.  

 

5.2.  Validation method  

After the identification of the parameters of the Zener model (𝐸𝐿, 𝐸𝑇, 𝜂𝐿 and 𝜂𝑇) on [0]4 and 

[90]4 specimens presented above, the identification of the storage modulus and loss factor have been 

extended to additional [±60]s [±45]s laminates. The coefficients [𝑄̃16
∗ ] were computed by the CLT, 

and used to determine the [ABD]* matrices. Inversion of these matrices gave the desired complex 

modulus. νLT was supposed to be frequency-independent and was measured at 0.43 by quasi-static 

tensile testing. νTL was determined using the conventional relationship 𝜈𝑇𝐿 = 𝜈𝐿𝑇 × 𝐸𝑇 𝐸𝐿⁄ . The 

frequency dependence of the shear modulus GLT was similar to that of the complex modules insofar as 

it uses the fractional derivative Zener model. The model coefficients that minimize the difference 

between the theoretical values and the experimental data were estimated at 𝐺𝐿𝑇0 = 0.15 𝐺𝑃𝑎 and 

𝐺𝐿𝑇∞ = 1.5 𝐺𝑃𝑎.  

The comparison between the theoretical values and the experimental data for [±60]s and [±45]s 

laminates appears on Fig. 4.  

As for [0]s and [90]s laminates, storage modulus for [±45]s and [±60]s laminates seems to 

depend slightly on the frequency (a). The difference between theoretical values and experimental data 

is relatively small for the [±60]s laminate, but it is around 12% for [±45]s at kHz. When the frequency 

increases, this difference tends to reduce to less than the experimental standard deviation. 

Loss factor curves follow a non-linear law, with a stabilization beyond 1 kHz (b). Once again, the 

difference between the theoretical curves and experimental values is lower for [±60]s, but with 

increasing frequency, it remains within the standard deviation for [±45]s laminate 

 

 

Figure 4. Experimental and analytic frequency dependence of 𝐸𝐿  (a) and 𝜂 (b) for [0]4 (: model, •: 

experimental data), [90]4 (---: model, *: experimental data), [±45]s (:Model, : experimental data) 

and [±60]s (  : model, : experimental data) 
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6.  Results and discussion 

 

An experimental vibration technique for fast identification of the dissipative properties of flax fibres 

reinforced epoxy composites has been presented. The characterization method allowed the measurement 

of Young’s modulus and loss factor of beams in a large frequency band (10 Hz to 4 kHz).  

Parameters of the fractional derivative Zener models identified in fibre and in-plane transverse directions 

of UD composites have been used to predict the frequency evolution of both moduli and loss factors. 

Based on the elastic-viscoelastic correspondence principle, CLT has been successfully used to predict 

the linear viscoelastic behaviour of different composite laminates. This prediction method was validated 

by comparison with the experimental results obtained for [0]4, [±45]s, [±60]s and [90]4 . laminates. 
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