
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

IWMSE2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 250 (2017) 012059 doi:10.1088/1757-899X/250/1/012059

Williams Element with Generalized Degrees of Freedom for 
Fracture Analysis of Multiple-Cracked Beam 

Hua Xu1,a，Quyang Wei1,b and Lufeng Yang1,2,c 
1Key Laboratory of Disaster Prevention and Structural Safety of China Ministry of 
Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, 
School of Civil Engineering and Architecture, Guangxi University, 530004, Nanning, 
China  
2Department of Housing and Urban-Rural Development, Guangxi Zhuang 
Autonomous Region, 530028, Nanning, China 
E-mail: axuhua@gxu.edu.cn(corresponding 
author), bweiquyang@163.com, clfyang@gxu.edu.cn  

Abstract. In this paper, the method of finite element with generalized degrees of freedom 
(FEDOFs) is used to calculate the stress intensity factor (SIF) of multiple cracked beam and 
analysed the effect of minor cracks on the main crack SIF in different cases. Williams element 
is insensitive to the size of singular region. So that calculation efficiency is highly improved. 
Examples analysis validates that the SIF near the crack tip can be obtained directly though 
FEDOFs. And the result is well consistent with ANSYS solution and has a satisfied accuracy. 

1.  Introduction 
Beam system is widely used in architectural engineering, bridge engineering and underground 
engineering. Structure is easily cracked cracks during application. And most of the cracks are multiple 
cracks. These cracks will reduce structural stiffness and integrity, which causes a serious threat on the 
structure. This paper is applied to fracture analysis of multiple cracked beam using FEDOFs compared 
with ANSYS. 

The safety analysis of structure with cracks usually needs to determine the stress field or the 
displacement field near the crack tip. Due to SIF could be efficiently manifested as the degree of crack 
tip stress - strain field, crack tip SIF becomes an important research object on structural linear elastic 
fracture analysis. Researchers apply different kinds of methods to calculate the value of crack tip SIF 
on a single crack beam, such as mathematical and mechanical theory [1], the boundary collocation 
method [2], and the singularity element method [3]. However, the SIF study of multiple crack beam is 
rare no matter at home or abroad. Rohde [4] combined analytical theory with geometry factors 
proposed an efficient algorithm for calculating the crack tip SIF containing multiple boundary cracked 
beam. Ooi [5] integrated SBFEM(scaled boundary finite element method) with finite element, and 
used SBFEM in the extended area to analyze the structure displacement changes on three sided-cracks 
and double edge cracks beam under different loads and the cracks propagation with loading. Qingyuan 
Wang [6] applied the singularity element to analyze the three-point bending beam that contains three 
cracks. In additional, the influence of the change of minor crack length and its position modification to 
the main crack’s crack tip SIF as well as mid-span deflection was discussed. Obviously, the research 
of multiple cracks fracture analysis still lack of achievement and remains to be furthered. 

Like industry standards such as UML activity diagrams, Business Process Model and Notation and 
EPCs, Petri nets [7] offer a graphical notation for stepwise processes that include choice, iteration, and 
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concurrent execution. Unlike these standards, Petri nets have an exact mathematical definition of their 
execution semantics, with a well-developed mathematical theory for process analysis. Williams 
generalized parameters element (W element) has been well applied [8-10] in fracture analysis that 
relates to the center-cracked plate and the three-point bending beam with higher precision and 
efficiency. This thesis will establish W unit calculating format for fracture analysis of multiple cracked 
beam. At the same time, using singularity element as contrast to verify the correctness of the results, 
and providing possible engineering advice. 

2.  Williams Element and SIF 

2.1.  Williams Element 
Assuming n strips of vertical cracks are on the low edge of a simply supported beam, now taking 3 
strips as example and discretizing them using finite element mesh, as shown in figure 1. 
 

 
 

Figure 1. Discretized mesh with 3 edge cracks. 

 
Figure 2. Discretized elements 
around the crack tip. 
 

The interior of the red region represents the ranges of crack tip singular region, and out of it is 
regular region. It can be learned from reference [11], the size of the crack tip singular region almost 
has no effect on the result of SIF, and every sub-element crack tip region selects the same size of the 
singular region for easily to discretize finite element mesh. The outermost of the singular region called 
sub-element ABFE, own the same edge with adjacent regular region element, as a result, the element 
one part in the regular region, and another in the singular region, termed as transitional element, which 
is between the blue line and the red line in figure 1 and figure 2.Crack tip triangle element sub-element 
OCD is in the crack tip damaged region, when ignore its element stiffness contribution to the global 
stiffness, termed trapezoidal element as Williams element (W element), or Williams macro-element. 

2.2.  Sub-Element SIF at the Crack Tip 
In this thesis, Williams series is selected as the arbitrary sub-element global displacement interpolation 
function. Thus its displacement field can be rewritten in matrix form, and intercept first m terms of the 
series: 
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in which G is the shear modulus; κ  is defined as: take 3-4μ in plane strain, take (3-μ)/(1+μ) in plane 
stress , μ is the Poisson ratio; ai、bi  is the undetermined coefficients, namely the general parameters 
in equation (1), they can be defined from external loading and boundary condition; (r, θ) is the polar 
coordinate taking sub-element crack tip as origin.  

Every stress components can be obtained according to Williams series displacement expression, 
and it can be known from the linear elastic fracture mechanics: SIF at the crack tip can be obtained 
from corresponding stress components. In order to avoid morbid equations, post-processing shear 
modulus G, so when r→0 and θ=0, one has: 

 I 1 I 12 , 2K Ga K Gbπ πI= =  (2) 

Only needs obtaining corresponding column vector {a}i to each sub-element crack tip, and extracting 
general parameters a1 and b1 of each column vector, corresponding crack tip SIF can be obtained. 

3.  The Global Governing Equation 
Solving global governing equation of domain. Discretizing the whole solution domain to n crack tip 
singular region and corresponding transition region and peripheral regular region, each crack tip 
singular region and transition region are discretized to multiple Williams element. It can learned from 
the constitution of Williams element that its element stiffness equation can be divided into blocks as 
follow: 
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boundary nodes of regular region and crack tip singular region , subscript s is the singular region. 
Integrating the whole Williams element of n crack tip and the whole element stiffness of regular region 
to obtain global stiffness, and without considering the condition of loading in crack tip singular region, 
then solve global governing equation of domain: 
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where subscript r is the regular region. According to the boundary conditions, solving equation (4) 
then generalized parameters {a}1、{a}2,…, {a}n of each crack tip region can be obtain, extracting 
general parameters a1 and b1 of each column vector, substituting it into equation (2) so SIF of each 
crack tip can be obtain. 

4.  Numerical Example 
A main crack of length c1 and two minor cracks of length c2 exist in a three-point bending beam with 
span length l=4000 mm, section size b×h=250 mm×600 mm, elastic modulus E=3.0×104 MPa and 
Poisson ratio μ=0.2. A concentrated load P=2.5 kN is concentrate in mid-span, as shown in figure 3. 
Calculating the changing law of main crack and two minor cracks SIF when the minor cracks’ length 
and position have changed by Williams elements. 
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Figure 3. Three-point bending beam with three edge cracks. 

4.1.  Preserve Minor Crack Length Constant with Position Changed 
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Figure 4. Main crack KI versus minor cracks’ position changed. 

 
Figure 4 shows that when l’/l smaller than 1/8(that is near the mid-span), there is a decreasing trend of 
main crack KI; when l’/l is larger than 1/8, the change of the position of the minor crack has no effect 
on the KI of the main crack. 
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Figure 5. Minor crack KI (left) and KII (right) versus minor cracks’ position changed. 

 
Figure 5 shows that with the minor crack furthering from the mid-span, the moment of the section in 

which the crack position is decreased, thus KI decreases, but near the mid-span, the decreasing trend 
relatively small. And minor crack KII decreased first and then increased. When the minor crack is very 
close to the symmetry axis, KII has its maximum value because of the shear mutation in mid-span. 
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When l’/l smaller than 1/8, minor crack leaves the stress concentration area, KII decreases sharply and 
then has a certain recover, so it comes to a minimum value. When l’/l is larger than 1/8, the shear 
remains constant, so the KII also tends to be constant. When the minor crack is near the endpoint, the 
moment gradually decreases to zero, thus KII decreases to zero. 

It can be inferred from the example: When the minor crack relatively close to the main crack of 
mid-span, the changes of position have a great influence on the main crack tip SIF. And the minor 
crack tip SIF is relative large, which shows that minor crack and main crack absorb energy together, 
thus main crack tip KI is smaller, reducing the risk of structural failure, proving the number of crack 
don’t represent the risk of failure. When minor crack relatively far from main crack of mid-span, effect 
of change in position of the main crack is not obvious, or even negligible. And the minor crack tip of 
crack KI decreases gradually, KII tends to be constant for a while and decreases to zero when the 
minor crack is near the endpoint. It shows that with minor crack position changes, KI is affected by the 
moment and KII is affected by moment and shear. 

4.2.  Preserve Minor Crack Position with Length Changed (Value C1=100 Mm; L’=500 Mm, 1000 
Mm, 1500 Mm) 
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Figure 6. Main crack KI versus minor cracks’ length changed. 

 
Figure 6 shows that results of W unit and the singular element calculation are approximately equal, 

whose relative error is around 1%, and both the changing trends are almost the same. When l '= 1000 
mm or 1500 mm, growth with minor crack not be affected the main crack KI. When l '= 500 mm, the 
main crack KI tended to decreases with minor crack extends. 

 

0 20 40 60 80 100
0

2

4

6

K I

c2

 Ansys Solution,l'=500
 Williams Solution,l'=500
 Ansys Solution,l'=1000
 Williams Solution,l'=1000
 Ansys Solution,l'=1500
 Williams Solution,l'=1500

 

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

K II

c2

 Ansys Solution,l'=500
 Williams Solution,l'=500
 Ansys Solution,l'=1000
 Williams Solution,l'=1000
 Ansys Solution,l'=1500
 Williams Solution,l'=1500

 
Figure 7. Minor crack KI (left) and KII (right) versus minor cracks’ length changed. 
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Figure 7 shows that the stress concentration becomes more obvious with minor crack extend. 
Among them, when the minor crack is more near the main crack, the stress concentration of KI is more 
obvious, but the distance changes are insensitive to KII. 

From this example, there comes the following conclusion. The changes of the minor crack length 
has little influence on the main crack tip SIF, the main crack tip of crack KI will be affected only when 
length of the minor crack and the main crack are relative equal. The minor crack tip SIF becomes 
much larger with minor crack extend. 

5.  Conclusion 
This thesis has established the generalized parameter Williams more crack beam element analysis 
model, analyzed three cracks in three point bending beam crack tip SIF, which shows that results of W 
unit and the ANSYS finite element solution are identical. This method can obtain SIF directly and has 
a satisfied accuracy, thus calculation efficiency can be highly improved. W unit shows the strong 
vitality and can be used widely in the future. 

Possible engineering advice is provided according to the results. Crack on the same side of beam in 
actual project needs major consideration main crack, take main reinforcement measures for main 
crack. When the minor crack length is short, its impact could be neglected .When length of minor 
crack and main crack are almost equal, the interaction between main crack and minor crack should be 
considered. 
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