
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

IWMSE2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 250 (2017) 012052 doi:10.1088/1757-899X/250/1/012052

 

Impact of Functional Groups in MWCNT on Surface 
Hydrophilicity, Mechanical and Thermal Properties of 
Polystyrene/CNT Composites  

Yanxia Zhang1,a , Le Shi1, Guangfen Li1,b* and Shaolei Liang1,c  

1State Key Laboratory of Separation Membranes and Membrane Processes, School of 
 Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, 
 P. R. China 
a272259193@qq.com, bliguangfen@tjpu.edu.cn, c770539199@qq.com  

Abstract. We prepared nanocomposites of MWCNTs/polystyrene via a solution casting 
method, and DI water was used as coagulation bath. The influence of pristine and two 
functionalized MWCNTs on surface morphology, thermal properties and mechanical properties 
of MWCNT/polystyrene composites were extensively discussed. Analysis of SEM shows that 
the porous structures with narrow size distribution from micro- to nano-size appear in all 
composites, which decrease the tensile strength of the composites. Despite the glass transition 
temperatures (Tg) of all the composites lower compared with Tg of pure polystyrene, which 
increase with the loading of MWCNTs. The mechanical properties of the composite with 5 
wt.% MWCNTs are enhanced greatly, and the phenomenon is especially pronounced for the 
addition of the MWCNT-OH. 

1. Introduction   
Polymer composite materials have been applied in different industrial fields due to their light weight, 
flexibility in process, high durability and strength[1,2]. The selection of nanofillers can significantly 
improve the strength, toughness, durability of the resulted composites[3]. Comparing with the 
conventional fillers as carbon nanofibers and spherical particles, carbon nanotubes (CNTs) are 
regarded as an ideal filler in preparing polymer/inorganic composites due to their outstanding 
electrical, thermal[4], and mechanical properties[5]. Therefore, polymers/CNTs with diverse 
functional and structural properties have found many applications[1,5], one of which is to produce 
CNTs-reinforced composite materials[6]. Nowadays, polymer materials as polystyrene[4], 
polymethylmethacrylate[6], and polyethylene[7] were commonly chosen as polymer matrices for 
producing polymers/CNTs composites. Several methods as melt mixing[8], solution casting 
technique[9], and in situ polymerization[10] were generally adopted for the synthesis of 
polymers/CNTs composites. However, the applications of these composites in different fields have 
been limited by poor interfacial interaction between polymer and CNTs, having the strong tendency to 
self-aggregate of CNTs. Two approaches as mixing process and surface treatment of pristine CNTs 
are generally used either for disentangling CNTs by mechanical force or for altering the surface 
functionality with -OH or -COOH. Surfactant such as sodium dodecyl sulfonate, sodium 
dodecylbenzene sulfonate, and Triton-X has been successfully applied to improve the dispersibility of 
CNTs in polymer matrix. The content of surfactant was also found to be a critical effect in dominating 
the surface morphologies caused by phase separation. Up to now, the combination effects of surfactant 
and pore structures on the composite properties have rarely been mentioned.  

In this study, pristine and two functionalized MWCNTs on the various properties of PS based 



2

1234567890

IWMSE2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 250 (2017) 012052 doi:10.1088/1757-899X/250/1/012052

 

composites were investigated. The influences of type and content of MWCNTs, and presence of 
surfactant on the performance of composites were analyzed. The chemical component, thermal 
properties, as well as surface hydrophilicity of composite materials are systematically studied.  

2. Experimental  
0.2g polystyrene (Goodfellow, U.K.), a certain amount of pristine MWCNTs (p-MWCNT, length 
10-30 μm), or hydroxylated MWCNTs (MWCNT-OH, hydroxyl content 5.58 wt.%, length 10-30 μm), 
or carboxylated MWCNTs (MWCNT-COOH, carboxyl content 0.49 wt.%), obtained from Beijing 
DK Nanotechnology Co. Ltd, 0.1 ml surfactant (Triton X-100) and 10 ml Tetrahydrofuran (THF) 
were mixed together and stirred until PS completely dissolved. Then the mixture was ultrasonicated 
for 2 h and then cast into a specific container. After 20 min, the gasket was immersed into DI water 
to obtain a stable membrane. The morphologies of composite surface and cross-section were studied 
through FESEM (Hitachis-4800, Hitachi Limited, Japan). To evaluate surface hydrophilicity of the 
composites, instrument of dynamic contact angle (DSA-100, Kruss, Germany) was used. Effect of the 
loading of carbon nanotubes on the Tg was analyzed by DSC (Perkin-Elmer, U.S.). The mechanical 
properties of the nanocomposite were characterized by single fiber electronic tensile strength tester 
(LLV-06 ED, Laizhou, China).  
 
3. Results and Discussion 

3.1 The Characterization of the Composites by DSC 
Differential scanning calorimetry was performed to distinguish the effect of adding CNTs and 
surfactant to PS matrix on the Tg. Figure1.a depicts the values of Tg obtained for the 
surfactant-treated CNTs/PS composites with different loadings of p-MWCNT, MWCNT-OH, and 
MWCNT-COOH. The Tg of pure PS and the composites with p-MWCNT loading from 1, 5 to 12.5 
wt.% were 106, 81, 95, and 97 ºC, respectively. The increase of Tg with p-MWCNT loading suggests 
that the strong interfacial affinity between PS and p-MWCNT hinders the mobility of polymer chain 
segment resulting in the increase of Tg. Similar results were also found in the composites with 
MWCNT-OH or MWCNT-COOH. The Tg of the composites with MWCNT-OH was 66, 75, and 78 
ºC, whereas Tg of the composites with MWCNT-COOH different loading was 60, 66, and 72 ºC. For 
the composites with functionalized MWCNTs, Tg values decline more than the composites with 
pristine MWCNTs. The highest declination of Tg was observed for the composites with 
MWCNT-COOH, which can be attributed to two possible effects: the length of CNTs and the type of 
the functional groups. As we known, the composites contained MWCNT-COOH also trend to lower 
thermal stability.  
 

 
Figure1. DSC analysis of PS composites with different MWCNTs. (a) surfactant-treated composites 
with CNT contents from 1, 5 to 12.5 wt.%; (b) a comparison of the composites with or without 
surfactant. 
 

To distinguish the effect of adding surfactant to PS matrix on the Tg. Figure 1.b displays the Tg 
values obtained from PS/CNTs composites with or without the surfactant. The loading of p-MWCNT, 
MWCNT-OH, and MWCNT-COOH was all set as 5 wt.%. Comparing with Tg for pure PS, the non 
surfactant contained composites with p-MWCNT and MWCNT-OH exhibit an increase in the Tg. The 
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shift of Tg values to higher values may attribute to the interaction between polystyrene molecules and 
CNTs, which promotes the thermal stability. Whereas, the composite with MWCNT-COOH show a 
reduction in Tg, which arises from the degradation behavior of MWCNT-COOH. For the MWCNT 
composites with the surfactant, a decrease of Tg values was observed for all composites. As the 
composites contain surfactants for obtaining a better dispersion of CNTs in solution, the surfactant 
molecules attached on the side walls of nanotubes acts as a plasticizer within the PS matrix and 
reduces Tg of the composites. 
 
3.2 Mechanical Performance of Composite Materials  
Here, stress-strain curves for PS composites containing different types and contents of CNTs were 
tested to evaluate the mechanical properties. Comparing pure PS with composites containing 5 wt.% 
of p-MWCNT, MWCNT-OH, and MWCNT-COOH, the values of tensile strength are enhanced from 
6.3 to 6.4MPa, 6.3 to 10.7MPa, 6.3 to 9.7MPa, respectively (Figure 2.a). Whereas the values of 
elongation at break are increased from 2.2 to 3.3%, 2.2 to 5.3%, and 2.2 to 4.0% (Figure 2.b). The 
highest tensile strength is especially found for the composite with 5wt.% loading of MWCNT-OH. 
The adding of p-MWCNT from 1 to 10 wt.% can not effectively improve the values of tensile strength 
due to CNT agglomerates. However, the fluctuation in the values of elongation at break may arise 
from such effects as: the addition of surfactants, the present of functional groups and the formation of 
agglomerates of CNTs. The present of surfactants and functional groups can improve the binding 
forces between CNTs and PS matrix and allows the ambient load being transferred to nanotubes when 
the composite is under external force. Therefore the elongation at break rises up with the adding of 
CNTs, which implies that CNTs are well dispersed in PS matrix. In contrary, when the loading of 
nanotubes exceeds a certain value, the larger agglomerates penetrate polystyrene and lower the 
interactions between polystyrene and CNTs, resulting in the elongation at break to decline. Our studies 
show that the composites with 5 wt.% CNTs tend to possess desirable mechanical properties. 
 

 

Figure2. Mechanical properties (a) and elongation at break (b) of composites with different CNTs. 
 
3.3 Effect of Type and Content of MWCNTs on Composite Morphologies 
The cross-section and surface morphologies of different surfactant-treated PS/MWCNT composites 
were depicted in Figure 3. The loading of p-MWCNT, MWCNT-OH, and MWCNT-COOH was varied 
from 1 to 10 wt.%. Microporous structures with micro-size from 6 μm to 1μm appear in the 
cross-section of all CNTs/PS composites. The continuous fine structures can be assigned to a 
morphology stabilization effect, which seems to act bridging two different material phase. 
Homogeneously distributed of MWCNTs can be viewed from all composite surfaces (inset of Figure 
3). The white spots in the inset of Figure 3.d-f indicate the presence of PS crystals. The phenomenon 
of agglomerates formation can be explained by crystal nucleation during the growth of PS crystals and 
the clusters of CNTs acts as nucleation agent and accelerates the growth of agglomerate. Such effect is 
consistent with previous report [7]. And the agglomerates of the longer CNTs easily occur even for the 
composites with much lower CNTs loading. It is envisaged that the polymer can better penetrate in the 
MWCNT agglomerates, especially in the MWCNT–OH. These results also explain why the 
composites with 5 wt.% possess better mechanical properties, especially for the composite without 
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porous structures (Figure 3.e). 
 

 
Figure3. SEM images of cross-section and surface (insets) morphologies of PS composites with 
different type of MWCNTs and CNT loading from 1, 5, to 10wt.%. 

3.4 Surface Properties of the Nanocomposites 
A better understanding of the effect of surface morphology on surface hydrophilicity was carried out 
by contact angle measurement to evaluate surface properties of PS composite membranes that 
containing different loading of p-MWCNT, MWCNT-OH, and MWCNT-COOH, as shown in Figure 
4.a When the loading of CNTs is 1 wt.%, the contact angles of the composite membranes varies from 
98° to 108°, which indicates that all the composite surfaces are hydrophobic regardless of the types of 
CNTs. With the increase of CNTs loading, the differences in contact angles of all composites diminish 
and almost are around 103 ± 5°. As the loading of CNTs increases to 10 wt.%, the contact angles 
declines especially for the composites contained MWCNT-OH and MWCNT–COOH. Likely, the 
amount of hydrophilic functional group as –OH or –COOH is main factor for dominating the surface 
hydrophilicity. The fact that the water contact angles of the composites with functionalized MWCNT 
decreasing with the loading of MWCNT further demonstrates that the surface hydrophilicity of the 
composites are correlated to the amount of functional groups in MWCNT. The effect of surfactant on 
the surface hydrophilicity of composite membranes was studied by plotting the contact angles of 
MWCNT/PS nanocomposites as a function of different MWCNT, as shown in Figure 4.b. The 
surfactant-treated MWCNT nanocomposite surfaces remained similar hydrophobicity as pure PS 
surface. The non surfactant-treated MWCNT nanocomposites exhibited relatively higher 
hydrophilicity than those surfactant-treated MWCNT composites. We deduce that the surface 
homogeneity can be one of the major effects in dominating surface hydrophilicity of their composites. 
 

 
Figure4. Water contact angles of the PS composite membranes changed with fraction of three different 
CNTs (a) and addition of surfactant (b). The red, black and green lines represent the PS composites 
with p-MWCNT, MWCNT-OH, and MWCNT-COOH, respectively. 
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4. Conclusion 
In this study, the composites were fabricated via a simple solution casting process using commercially 
available materials. The thermal properties, mechanical properties and the surface morphology of PS 
nanocomposites have been investigated with relation to several factors as the CNTs content, different 
functional groups, the surfactant and so on. The CNTs content was kept mainly below 12.5 wt% for 
obtaining the correlation between physical properties and surface morphology. It was found that the 
tensile strength of PS nanocomposites was promoted with increasing of CNTs content as the 
nanotubes loading was below 5 wt.%. The presence of surfactant and higher CNTs loading favors 
porous structure formation, especially for functionalized MWCNT composites. In addition, a 
minimum of Tg appears in MWCNT-COOH composites, indicating a prominent effect of instability of 
MWCNT-COOH on the thermal properties of MWCNT-COOH composites. 
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