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Abstract. In the subject of the present study a probabilistic approach to the analysis of steel-
aluminium lattice tower was used. Structural design parameters are defined as the deterministic 
values and random variables. Random variables are not correlated. The criterion for structural 
failure is expressed the limits of functions referring to the serviceability limit state. The 
description of the limit state of structure implicit forms of the random variables function was 
used. The study presents a combination of the reliability analysis program with the MES3D 
external FEM program. The NUMPRESS software, created at the IFTR PAS, was used in the 
reliability analysis. The Hasofer-Lind reliability index, determined using an iterative procedure 
of Rackwitz-Fiessler, was used as a reliability measure. The values of reliability index for 
different cases of the vector of random variables, that is, different descriptions of mathematical 
model of the structure, were determined. The effect of assumed probability distribution of 
individual random variables on the value of the reliability index was determined. In the 
description of random variables, the different types of probability distribution were used and 
the values of the reliability index for the normal distribution and the distribution chosen 
according to the kind of a variable were compared. The primary research method is the FORM 
method. In order to verify the correctness of the calculation Monte Carlo and Importance 
Sampling methods are used. The relative error of the reliability index was calculated taking the 
simulation Monte Carlo method as a reference. The effectiveness of the primary research 
method was performed by comparing the number of calls of the limit state, which is connected 
with the calculation time. The sensitivity of reliability index to the random variables was 
defined. 

1.  Introduction 
The most advanced reliability analysis methods are probabilistic methods. They allow quantitative 
assessment of structure reliability. The probabilistic finite element methods for analysis of structures 
have become of increasing interest in recent years. These are aimed at accounting for the random 
nature of material properties or loads. The existing methods can be placed in two distinct categories. 
The first group is aimed at second – moment analysis, where the objective is computing the means and 
variance of response quantities. One of the methods of this type is the perturbation method proposed in 
the works [1], [2], [3] to solve problems of linear elasticity theory. The application of the perturbation 
method to calculation by the finite element method is presented in the monograph [4]. In the paper [5] 
authors proposed take into account the random nature of material properties or loads in dynamic 
reliability analysis. Lately, interesting works are [6], [7]. The second group is aimed at reliability 
analysis, where the objective is computing probabilities associated with prescribed limit states. The 
reliability theory is already a well-established research area. One can mention a number of textbooks 
and monographs, the most well-known being [8], [9], [10], [11] [12]. Special attention should be paid 
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to publications by [13], [14]. They present the basic concepts of reliability theory with a particular 
reference to their uses in civil engineering. Interesting works are [15], [16] where numerical aspects of 
application of first order reliability method FORM in node snapping truss structures are considered. 
Different reliability assessment of structure propose work [17] about system reliability using serial and 
parallel systems. In order to determine the reliability of this approach it is necessary to set KAFM 
(kinematic admissible failure mechanism). The KAFM by spectral analysis of stiffness matrix are 
specified [18], [19]. Reliability issues are important not only in static analysis, but also in stability 
analysis or dynamic analysis [20]. 

A fundamental problem in structural reliability theory is the computation of the probability failure 
Pf of the structural element in the X-space must be equal to the probability defined in Z-space. The 
FORM method transforms random variables X to the standard space Z. Next surface boundary G(Z)=0 
is approximated by hyperplane tangent to it at the design point. It is the most probable point of failure 
out of all points on this surface. With the linearization of the limit state function at the design point, it 
is possible to obtain a measure of reliability which is invariant due to the equivalent formulations of 
the boundary condition, i.e. the so-called Hasofer-Lind reliability index β [21]. Finding a design point 
is a task for non-linear programming with limitations. 
One major advantage of the FORM method is that it allows the calculation of the sensitivity of the 
reliability index β on change of parameters occurring in the task description, practically without the 
need for additional calculations. The sensitivity of the reliability index β is the first derivative of the 
ratio β on the specified variable and denote it as α. In the sensitivity analysis the higher absolute value 
β is the greater the impact of the variable on the reliability index value. 
 

 

Figure 1. Illustration of the linearization proposed by Hasofer and Lind [21] in standard normal space 

2.  Investigation methodology 
In early applications of reliability analysis methods, it was accepted that the limit state function is an 
explicit function of random variables. Such functional dependency can be realized only for very 
simple examples. In practical realizations, this dependence is not explicit and it is determined using 
numerical procedure, e.g. the finite element methods.  
This article aims to present the communication between the NUMPRESS reliability analysis program 
and the MES3D external FE programs. The NUMPRESS program was developed at the Institute of 
Fundamental Technological Research of the Polish Academy of Sciences by Kowalczyk, Rojek, 
Stocki, Bednarek, Tauzowski, Lasota, Lumelskyy, Wawrzyk [22]. The MES3D [23] program was 
developed by Szaniec. 
The first step of the reliability analysis task using NUMPRESS is a definition of the stochastic model. 
The user must provide marginal distributions of the basic random variables, for correlated variables, 
their correlation matrix. In the current version of the program, the following marginal distributions are 
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available: exponential, Frechet, Gumbel, log-normal, normal, Rayleigh, uniform, Weibull and a 
general empirical distribution described by a set of experimental points. At this step, definitions of the 
so-called external variables, which are outputs of finite element method programs, can also be 
introduced. In the presented examples, basic random variables are load, member section area and 
elastic modulus. Basic random variables are not correlated. 

After defining the variables, the limit state function is defined. In NUMPRESS, the limit state 
function is symbolically given in the standard math notation as a function of the basic random 
variables and external variables. The definition may include most of the basic mathematical functions. 
If the external variables appear in the definition, it is identified which basic random variables 
implicitly influence the limit state function by analyzing which of them are involved in modifying 
input data files used by programs that generate values of the considered external variables. In the 
paper, the condition of non-exceeding of the admissible horizontal displacement is considered as the 
limit state function. 

The consecutive steps are dedicated to the selection, parameter setting and execution of the 
reliability analysis algorithm. The most computationally efficient methods for failure probability 
estimation are based on an approximation of the failure domain in the standard normal space. In 
FORM the failure domain is approximated by the half space that is defined using the limit state 
surface linearized in the so-called design point. In the standard normal space, the design point is the 
point on the limit state surface which is closest to the origin. Finding a design point is a task for non-
linear programming with limitations. There are two standard, gradient based algorithms for solving 
this problem implemented in NUMPRESS.  

3.  Aim of study 
Analyzed bar structure is the shorter side of the lattice tower base dimensions 3.048 m x 6.069 m and a 
height of 15.24 m (figure 2a). The structure was designed by truss elements and charged by the wind. 
Effect of wind by the nodal concentrated forces was replaced. Static scheme of the truss and values 
P=34.125 kN was taken from the work [24]. 

In the study geometry of the cross-section elements and chosen material referring to European 
standards was designed. Columns were designed of aluminium EN AW-6005, used in building and 
construction elements, which require high strength. Girts and webs were made of S215 steel. Detailed 
geometric parameters and material is shown in figure 2b. 

Structural design parameters are defined as the deterministic values and random variables. Random 
variables are not correlated. The limit functions imposed on the load bearing structure are 
displacement constraints related to the serviceability limit state. The initial analysis of the 
displacement state, performed with the Robot software, made it possible to locate the sites at which 
displacement extreme values occur. Then, with the MES3D program, using the Finite Element 
Method, the maximum horizontal displacement uA was determined. Below, probabilistic quantities are 
specified: 

X1 – nodal concentrated force replacing the influence of wind (0.4P), 
X2 – nodal concentrated force replacing the influence of wind (0.8P), 
X3 – nodal concentrated force replacing the influence of wind (0.15P), 
X4 – nodal concentrated force replacing the influence of wind (0.3P), 
X5 – member section area of RP150x150x10 columns,  
X6 – member section area of RK120x100x8 girts and webs, 
X7 – member inertia moments of RP150x150x10 columns,  
X8 – member inertia moments of RK120x100x8 girts and webs, 
X9 – elastic modulus for EN AW-6005A,  
X10 – elastic modulus for S215 steel. 
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a) b) 

      

Cross-section of lattice tower: 
 Aluminium EN AW-6005A 

E=69,5 GPa, 
Columns (elements 1-10) 

 
RP150x150x10 
A1 = 56·10-4 m2 

 
 Steel S215 

E=210 GPa, 
Girts and webs 
(elements 11-25) 

 
RK120x100x8 
A2 = 32.64·10-4 m2 

 

Figure 2. Geometry of lattice tower 

Limit functions were defined as functions of random variables grouped in five different vectors. 
The following cases of random variables vector were analyzed: 
Case A : X = {X1, X2, X3, X4}, 
Case B : X = {X1, X2, X3, X4, X5, X6}, 
Case C : X = {X1, X2, X3, X4, X5, X6, X7, X8}, 
Case D : X = {X1, X2, X3, X4, X5, X6, X7, X8, X9, X10} 
Case E : X = {X5, X6, X7, X8, X9, X10}. 
 

Two variants of random variables description were considered in the analysis. In Variant I (table 1) 
only normal distribution for each random variable was used, whereas in Variant II (table 2) 
distribution of variables appropriate to the variable nature was proposed. The transformation of normal 
parameters on the parameters of another distribution was estimated by collocation method at a central 
point. The values of coefficients of variation were selected on the basis of statistical studies of the 
building strength and buildings materials and products from work of [25]. For variables with load 
range coefficients of variation were adopted in accordance with recommendations of [26]. 

The lengths of columns, girts and webs and coordinates of nodes were assumed to be deterministic 
quantities. Limit functions as the condition of the non-exceeding of the admissible horizontal 
displacement of node A (figure 2) was formulated:  
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where udop denotes permissible displacement in accordance with PN-EN 1999-1-1:2011 standard. 
For the structure under consideration, value udop=120 mm. 

Table 1. Description of the random variables (Variant I) 

Random 
Variable (Xi) 

Probability 
density function 

Mean 
value (µX) 

Standard 
deviation(σX) 

Coefficient 
of variation (νX) 

X1 Normal 13.65 kN 1.365 kN 10% 

X2 Normal 27.3 kN 2.73 kN 10% 

X3 Normal 5.119 kN 0.5119 kN 10% 

X4 Normal 10.238 kN 1.0238 kN 10% 

X5 Normal 56·10-4 m2 2.8·10-4 m2 5% 

X6 Normal 1838.667 10-8 m4 91.933 10-8 m4 5% 

X7 Normal 32.64·10-4 m2 1.632·10-4 m2 5% 

X8 Normal 486.323 10-8 m4 24.316 10-8 m4 5% 

X9 Normal 69.5∙106 kN/m2 2.76∙106 kN/m2 4% 

X10 Normal 210∙106 kN/m2 8.4∙106 kN/m2 4% 

 

Table 2. Description of the random variables (Variant II) 

Random 
Variable (Xi) 

Probability 
density function 

Mean 
value (µX) 

Standard 
deviation(σX) 

Coefficient 
of variation (νX) 

X1 Gumbel 13.036 kN 1.065 kN 8.2% 

X2 Gumbel 26.072 kN 2.129 kN 8.2% 

X3 Gumbel 4.888 kN 0.399 kN 8.2% 

X4 Gumbel 9.777 kN 0.799 kN 8.2% 

X5 Log-normal 55.93·10-4 m2 2.795·10-4 m2 5% 

X6 Log-normal 1836.373 10-8 m4 91.761 10-8 m4 5% 

X7 Log-normal 32.599·10-4 m2 1.629·10-4 m2 5% 

X8 Log-normal 485.716 10-8 m4 24.271 10-8 m4 5% 

X9 Log-normal 69.444∙106 kN/m2 2.777∙106 kN/m2 4% 

X10 Log-normal 209.832∙106 kN/m2 8.39∙106 kN/m2 4% 

4.  Results and discussion. 
The value of the Hasofer-Lind reliability index was determined with the FORM method, and for the 
sake of comparison, with other methods, i.e. Monte Carlo and Importance Sampling. The results for 
two variants (Variant I and Variant II) of random variables description and five different cases of 
random variables vector (from A to E Cases) are presented in table 3 and table 4. 

 
Table 3. Values of the Hasofer-Lind reliability index for Variant I. 

Case of random 
variables vector 

FORM 
Importance 
Sampling 

Monte 
Carlo 

A 2.22 2.21 2.21 

B 2.20 2.12 2.13 

C 2.20 2.18 2.19 

D 1.82 1.85 1.85 

E 3.24 3.20 3.18 
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Table 4. Values of the Hasofer-Lind reliability index for Variant II. 

Case of random 
variables vector 

FORM 
Importance 
Sampling 

Monte 
Carlo 

A 2.70 2.63 2.62 

B 2.69 2.60 2.63 

C 2.69 2.59 2.60 

D 2.48 2.39 2.42 

E 4.51 4.48 4.49 

 
The relative error of reliability index was estimated with the assumption that the reference is the 

Monte Carlo method (table 5 and table 6). In addition, the difference in the value of reliability index 
determined by the FORM method for different descriptions of the mathematical model (Variant I and 
Variant II) and for different cases of random variables vector (from A to E Cases) was estimated 
(table 7). The relative error of reliability index in table 7 was estimated with the assumption that the 
reference is the mathematical description in Variant II which precisely model the real work of 
structure and the nature of loads. 

 
Table 5. Values of relative error computing the Hasofer-Lind reliability index for Variant I 

Case of random 
variables vector 

FORM 
Importance 
Sampling 

A 0.5% 0.0% 

B 3.7% 0.5% 

C 0.5% 0.5% 

D 1.6% 0.0% 

E 1.9% 0.6% 

 
Table 6. Values of relative error computing the Hasofer-Lind reliability index for Variant II 

Case of random 
variables vector 

FORM 
Importance 
Sampling 

A 3.0% 0.3% 

B 2.2% 1.1% 

C 3.3% 0.4% 

D 2.4% 1.2% 

E 0.4% 0.2% 

 
Table 7. Relative error of computing the reliability index for FORM method in accordance with 

Variant I and Variant II 

Case of random variables vector Relative error

A 17.8% 

B 18.2% 

C 18.2% 

D 26.6% 

E 28.2% 
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The reliability analysis performed with the NUMPRESS software also provides information on the 
number of calls of the limit function, and thus on the time necessary to estimate the reliability index 
(table 8 and table 9). In addition, graphs were provided that show the sensitivity of the reliability index 
to random variables for Variant I and Variant II. The sensitivity of reliability index to the random 
variables for Case D of random variables vector only was shown. 

Table 8. Effectiveness of the FORM method when compared with other methods – for Variant I 

Case of random 
variables vector 

Number of the limit state function calls/Calculation time 

FORM Importance Sampling 
Monte 
Carlo 

A 26/9sec 526/3min22sec 75000/48min56sec 

B 34/13sec 534/3min26sec 95000/58min16sec 

C 52/19sec 552/3min33sec 100000/1h23min4sec 

D 62/23sec 562/3min38sec 100000/1h40min17sec

E 65/23sec 565/3min39sec 100000/52min49sec 

 
Table 9. Effectiveness of the FORM method when compared with other methods – for Variant II 

Case of random 
variables vector 

Number of the limit state function calls/Calculation time 

FORM Importance Sampling 
Monte 
Carlo 

A 42/20sec 542/4min47sec 95000/58min50sec 

B 54/27sec 554/4min36sec 95000/49min3sec 

C 66/32sec 566/4min41sec 100000/1h27min9sec 

D 63/31sec 563/4min43sec 90000/1h49min11sec 

E 65/30sec 565/4min42sec 100000/51min12sec 

 

a) 

 

b) 

 

Figure 3. Sensitivity of the reliability index β to random variables for a) Variant I, b) Variant II 
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The analysis of the results demonstrates that the FORM method is good enough and much simpler to 
apply. The maximum relative error compare to Monte Carlo method amounted to 3.7% for the 
Variant I (Case B) and to 3.3% for Variant II (Case C). In the analysis two Variants of random 
variables description were considered. We observed that using distribution of variables appropriate to 
the variable nature influences on the value of reliability index. The differences in the value of 
reliability index determined by the FORM method for different descriptions of the mathematical 
model were shown in table 7. The maximum relative error is 28.2% for Case E of random variables 
vector. Accounting for a larger number of random variables considerably reduces the reliability index 
value (table 3 and table 4). We observed that the lowest values of reliability index are for Case D of 
random variables vector where we have the highest number of variables. The timescale of 
computations, which is related to number of calls of the limit function, should also be taken into 
account. Calculation time for FORM method equals amount to 30 seconds but for Monte Carlo 
method is almost 2 hours. 

Another important component of the study was to investigate the sensitivity of the reliability index 
to changes in probabilistic characteristics of the random variables under consideration. After analysing 
the results obtained for Variant I and Variant II (figure 3) it can be seen that the sensitivity of the 
reliability index is the highest for the random variable X2 which describes the nodal concentrated force 
replacing the influence of wind on the windward side and X10 elastic modulus for S215 steel. The 
sensitivity of the reliability index is the lowest for the random variable X6 (member section area of 
RK120x100x8 girts and webs), X8 (member inertia moments of RK120x100x8 girts and webs) and X9 
(elastic modulus for EN AW-6005A). Knowing this sensitivity is crucial for better understanding the 
structure performance. If the reliability index sensitivity due to the random variable Xi is low when 
compared with other variables, it can be stated that the impact of this variable on failure probability is 
small, and in successive computations it can be treated as a deterministic parameter. Sensitivity 
analysis is an important element in the assessment of the impact of random variables on the reliability 
index value and thus on the factors which determine the safety of the structure. 

5.  Conclusions 
The analysis of the results demonstrates that the FORM method is sufficiently precise and 
authoritative research method. The timescale of computations, which is related to number of calls of 
the limit function, should also be taken into account. The results indicate that the FORM method 
allows obtaining a quick response, which makes it possible to use the method in engineering practice 
as one of the modules of computational software that support structure design. We observed 
significant differences in the values of reliability index determined by the FORM method for different 
descriptions of the mathematical model Therefore in order to precisely model the real work of 
structure the probability distributions of random variables appropriate to their nature should be 
applied. So we assume Monte Carlo method is not applicable to huge tasks of reliability structure. 
That results from a considerably longer computation time when compared with FORM method. Due to 
their high accuracy, however, those methods are well suited to determine an error made by the first 
and second order methods. 

However, it has to be remembered at all times that the FORM method yields the best results when 
only one design point exists, the limit state function is not strongly linear and it is differentiable. The 
most commonly encountered disadvantage, also observed by other users, involves problems with 
calculating the gradients of the limit state function. Consequently, before taking a decision on applying 
the method to other problems in the structure analysis, it is necessary to run a number of functionality 
tests. 

References 
[1] T. Hisada, S. Nakagiri, “Role of the Stochastic Finite Element Method in structural safety and 

reliability,” Proceedings of the 5th International Conference on Structural Safety and 



9

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 032072 doi:10.1088/1757-899X/245/3/032072

 
 
 
 
 
 

Reliability, pp. 385–94, 1985. 
[2] W. K. Liu, A. Mani, and T. Belytschko, “Finite Elements Methods In Probabilistic Mechanics,” 

Probabilist Eng Mech, vol. 2, pp 201–213, 1987. 
[3] M. Shinozuka, “Basic issues in Stochastic Finite Element analysis,” Proceedings 5th 

International Conference on Applications of Statistics and Probability, vol. 1,pp. 507–520, 
1987. 

[4] M. Kleiber, T.D. Hien, “The stochastic finite element method: Basic perturbation technique and 
computer implementation,” John Wiley & Sons, 1992. 

[5] S. Pourzeynali, A. Hosseinnezhad, “Reliability analysis of bridge structures for earthquake 
excitations” Archive of SID, Scientia Iranica, vol. 16, pp. 1–15, 2009. 

[6] J. Li, J. Chen, “Stochastic Dynamics of Structures,” John Wiley & Sons, 2009. 
[7] R. R. Pedersen, S. R. K. Nielsen, and P. Thoft-Christensen, “Stochastic analysis of the influence 

of tower shadow on fatigue life of wind turbine blade,” Structural Safety, vol. 35, pp. 63–71, 
2012. 

[8] H. O. Madsen, S. Krenk, and N. C. Lind, “Methods of Structural Safety,” Prentice-Hall, 1986. 
[9] R. E. Melchers, “Structural Reliability Analysis and Predictions,” 2nd Ed., Wiley, 1999. 
[10] O. Ditlevsen, H.O. Madsen, “Structural Reliability Methods,” Wiley, 1996. 
[11] P. Thoft-Christensen, M. J. Baker, “Structural Reliability. Theory and its Applications,” 

Springer-Verlag, 1982. 
[12] G. Augusti, A. Baratta, and F. Casciati, “Probabilistic Methods in Structural Engineering,” 

Chapman and Hall, 1984. 
[13] M.E. Harr, “Reliability-Based Design in Civil Engineering,” McGraw-Hill, 1987. 
[14] A. S. Nowak, K. R. Collins, “Reliability of structure,” McGraw-Hill Higher Education, 2000. 
[15] U. Radoń, “Reliability analysis of Misses truss,” Archives of Civil and Mechanical Engineering, 

vol. 11(3), pp. 723–738,2011. 
[16] U. Radoń, “Numerical aspects of application of FORM in node snapping truss structures,” 

Archives of Civil and Mechanical Engineering, vol. 15(1), pp. 262–271, 2015. 
[17] K. Kubicka, U. Radoń, “Proposal for the assessment of steel truss reliability under fire 

conditions,” Archives of Civil Engineering, vol. 4, pp. 141–154, 2015. 
[18] P. Obara, W. Gilewski, and J. Kłosowska, “Applications of tensegrity structures in civil 

engineering,” Procedia Engineering, XXIV R-S-P seminar, Theoretical Foundation of Civil 
Engineering (24RSP) (TFoCE 2015), vol. 111, pp. 242–248, 2015. 

[19] P. Obara, W. Gilewski, and J. Kłosowska, “Verification of Tensegrity Properties of Kono 
Structure and Blur Building,” Xxv Polish - Russian - Slovak Seminar -theoretical Foundation 
Of Civil Engineering, vol. 153, pp. 173–179, 2016. 

[20] P. Obara, W. Gilewski, “Dynamic stability of moderately thick beams and frames with the use 
of harmonic balance and perturbation methods,” Bulletin of The Polish Academy of Sciences: 
Technical Sciences, vol. 64(4), pp. 739–750, 2016. 

[21] A.M. Hasofer, N.C. Lind, “Exact and invariant second moment code format,” Journal of the 
Engineering Mechanics Division, ASCE, vol. 100, pp. 111–121, 1974. 

[22] http://numpress.ippt.gov.pl/index.html 
[23] W. Szaniec, K. Zielińska, “Harmonic analysis of bar domes subjected to wind loads,” 

International Journal for Computational Civil and Structural Engineering, vol. 10(4), 
pp. 130–135, 2014. 

[24] B. Potrzeszcz-Sut, E. Pabisek, “The analysis of stresses and displacements in the aluminium 
structure with replaceable elements,” Budownictwo i Architektura, vol. 12(1), pp. 275–282, 
2013. 

[25] M. Gwóźdź, A. Machowski, “Selected studies and calculations of building structures using 
probabilistic methods,” Publishing house PK, Cracow, 2011. 

[26] JCSS, Probabilistic Model Code, Joint Committee of Structural Safety, 2001. 


