
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 062039 doi:10.1088/1757-899X/245/6/062039

Design Automation Using Script Languages. High-Level CAD
Templates in Non-Parametric Programs

R. Moreno1, A. M. Bazán2
1 University of Granada, Dpto. Expresión Gráfica, E.T.S. Ingeniería de Edificación,
18071 Granada, Spain

2 UPM, Dpto. Ingeniería Civil: Construcción, E.T.S. Ingeniería de Caminos, Canales y
Puertos, 28040 Madrid, Spain

rmc@ugr.es

Abstract. The main purpose of this work is to study the advantages offered by the application
of traditional techniques of technical drawing in processes for automation of the design, with
non-parametric CAD programs, provided with scripting languages. Given that an example
drawing can be solved with traditional step-by-step detailed procedures, is possible to do the
same with CAD applications and to generalize it later, incorporating references. In today's
modern CAD applications, there are striking absences of solutions for building engineering:
oblique projections (military and cavalier), 3D modelling of complex stairs, roofs, furniture,
and so on. The use of geometric references (using variables in script languages) and their
incorporation into high-level CAD templates allows the automation of processes. Instead of
repeatedly creating similar designs or modifying their data, users should be able to use these
templates to generate future variations of the same design. This paper presents the automation
process of several complex drawing examples based on CAD script files aided with parametric
geometry calculation tools. The proposed method allows us to solve complex geometry designs
not currently incorporated in the current CAD applications and to subsequently create other
new derivatives without user intervention. Automation in the generation of complex designs
not only saves time but also increases the quality of the presentations and reduces the
possibility of human errors.

1. Introduction
The aim of the ongoing research is to shift from manual design of disposable geometries to CAD
automation by introducing high-level generic geometry templates. Instead of repeatedly modelling
similar instances of objects, engineers should be able to create more generic models that can represent
entire classes of objects. We present new methods to eliminate non-creative geometric drawing and
modelling by performing reuse on specific design features. The goal is to allow engineers to work on a
higher abstraction level where the use of low-level CAD functions during the drawing and modelling
phase is minimized if not fully eradicated [1].

Descriptive geometry provides insight into the structure and metric properties of spatial objects,
processes, and principles. Descriptive geometry courses cover not only projection theory but also
modelling techniques for curves, surfaces, and solids, thus offering insight into a broad variety of
geometric shapes [2].

2

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 062039 doi:10.1088/1757-899X/245/6/062039

CAD software is used to increase designer productivity, improve design quality and
communications through documentation, and create databases for manufacturing. As the CAD
modelling techniques become more and more advanced, it is necessary to complete product modelling
and design changes faster than ever [4]. Updating assemblies that have hundreds of sub-assemblies
and parts manually in 3D modelling software is very complicated and time consuming.

Undoubtedly, once a task is fully defined, computers and machines are unparalleled in executing it
repeatedly with great speed and sustained accuracy. To this end, Hopgood [3] states: “computers have
therefore been able to remove the tedium from many tasks that were previously performed manually”.
The process referred to is also called Design Automation (DA) by various researchers. The key phrase
here is that many manual tasks have been removed through DA and a natural question would be: why
not remove the tedium from all manual tasks? [4].

One of the great benefits of using CAD to create technical drawings is the ability to adapt to suit
our company’s processes. If we can establish a technical drawing process that we perform frequently,
it can be automated. If we’ve ever had to do the same thing with CAD twice, think about how we
could automate it so we never have to do it again.

One of the easiest ways to automate a CAD process is to write a script [5]. In computer
programming terms, a script is a program that will run with no interaction from the user. In AutoCAD
[6], a script file is an ASCII text file that contains a set of command line instructions to follow, just
like an actor reading from a script. AutoCAD script files always have the file extension ‘.scr’.

AutoLISP [7] is the original and most popular programming language for AutoCAD. The reason
for its popularity is that it is a natural extension of the program. No additional software needs to be
run, and AutoLISP can run commands that Autodesk and other developers offer in the command
window.

The LISP code can be entered directly into the command window or loaded using '.lsp' or '.scr'
files. Once a LISP program has been loaded, the built-in functions can be executed from the command
window. These functions can be executed similarly to CAD commands, but it is the programmer who
decides which messages to display. It is possible to use LISP code with a command macro that is
activated from the CAD user interface or from a tool on a palette.

Visual languages can be very useful for helping architecture students understand general
programming concepts, but scripting languages are fundamental for implementing generative design
systems [8].

It is possible to learn to draw with AutoCAD and to program with AutoLISP for AutoCAD using
the manuals and online aids offered by both Autodesk (knowledge.autodesk.com) and other
independent developer websites (lee-mac.com, afralisp.net, or cadtutor.com). Self-learning through
tutorials and videos is very widespread and numerous websites are available to solve any questions we
may raise using advanced search engines if we search for the terms ‘AutoCAD’ or ‘AutoLisp’ as
appropriate.

In the design of complex engineering products it is essential to handle cross-couplings and
synergies between subsystems [9]. An emerging technique that has the potential to considerably
improve the design process is multidisciplinary design optimization (MDO) [1].

MDO requires a concurrent and parametric design framework. Powerful tools in the quest for such
frameworks are DA and knowledge-based engineering [9]. The required knowledge is captured and

3

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 062039 doi:10.1088/1757-899X/245/6/062039

stored as rules and facts that will finally be activated upon demand. A crucial challenge is what kind of
knowledge to store in order to create generic DA structures and how to store it.

In an effort to address the above challenges, this paper proposes the creation of High-Level CAD
templates (HLCts) for the manipulation of geometry and High-Level Analysis templates (HLAts) for
concept evaluations.

2. High-level CAD templates in non-parametric CAD
AutoCAD and other compatible applications automatically create object identifiers, hidden during the
drawing process, that a user usually does not know. These are necessary for the internal manipulation
of the objects, but because of their extensions they are difficult to use learning descriptive geometry
procedures.

Through LISP variables it is possible to create geometric and object references similar to those
traditionally used in descriptive geometry. These references will be very useful in the detailed
description of graphic procedures. In the command window, macros, and script files, the use of CAD
drawing commands can be combined with LISP commands, functions, and variables (used as
geometric and object references). They are equivalent:

_vpoint _r !alfa !beta ; in script files and in the command window

(command “_vpoint ” “_r” alfa beta) ; in LISP files and in script files

Notes: The comment lines are preceded by semicolons and serve to facilitate the understanding of
the code. All AutoCAD commands preceded by the underscore will be executed even if the program is
installed in another language. The references used in the script files or in the command window are
preceded by the exclamation mark. The keyword "_rotate" and its abbreviation "_r" do not use the
quotation marks in the commands but use them in the command function. LISP functions (in
parentheses) can be used as arguments in CAD commands. The commands can be used in LISP using
the command function.

Addressing a simple design task using advanced CAD applications is not difficult. But some
specific designs require the application of traditional methods of descriptive geometry. To solve them
efficiently requires a detailed analysis of possible combinations. The incorporation of mathematical
functions with geometrical and topological calculations is fundamental to avoid drawing step by step.
This is the proposed case of HLCts with non-parametric CAD using script languages.

Procedure for creating HLCts is as follows: Examples are selected from standard tasks where CAD
applications do not offer solutions. It can be solved first as paper-and-pencil sketches and later with
AutoCAD. The command history is extracted and summarized it in script files. To avoid unexpected
errors when executing drawing commands using scripts, it is essential to disable certain drawing aids,
visible in the status line, and to activate them when finished. Reference variables are created with the
parametric data and the objects are drawn. We calculate the derived references that can be reused and
redraw. A later analysis will allow us to process the information in a global way using variables,
functions, and commands created with AutoLISP. A detailed analysis and design allows us to
anticipate possible strategies to complete the design. We create the analysis functions necessary to
deal with any situation. Finally, we carry out debugging to remove possible errors.

We present and discuss the results of two practical examples of the workplace: 1) automation of
axonometries and 2) automation of ellipses with conjugated diameters. The first example uses the
bearing of the coordinate axes to determine the type of projection. The second example uses the
Mannheim method.

4

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 062039 doi:10.1088/1757-899X/245/6/062039

3. Results and discussion
In the automation of axonometries, we calculate the viewing direction in space from the tripod of axes
on the paper and we obtain blocks with the projections.

Figure 1. LISP – Axo command

Figure 2. Axonometric projections

In oblique projection, we look for an orthographic intermediate projection, where we calculate the
angle alpha of the X-axis as a function of the angle of the reduced axis and the angle beta from the
XY plane as a function of the coefficient k of reduction. The block of the intermediate projection is
inserted with a scale EscY as a function of the coefficient of reduction. The line thickness, base point,
and colour errors in the projections are corrected. This method can be applied to obtain shadows on
horizontal, frontal, or profile planes.

5

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 062039 doi:10.1088/1757-899X/245/6/062039

Figure 5. LISP – Cavalier function

Figure 6. Lisp – Orthographic axonometric function

Figure 3. LISP – Military function Figure 4. LISP – Flat shot block properties function

6

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 062039 doi:10.1088/1757-899X/245/6/062039

In the orthographic projection, we use the graphic method of the fundamental triangle or of traces
for the calculation of the angles of the X-axis and XY-plane.

In the automation of ellipses with conjugate diameters, we follow the Mannheim method for
obtaining the principal axes, ellipse, or procedure step-by-step (as a learning tool). This method can be
applied to obtain projections of revolving surfaces: cone, cylinder, sphere and toroid.

Figure 7. Lisp – Mannheim command

Figure 8. Mannheim procedure

7

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 062039 doi:10.1088/1757-899X/245/6/062039

The exposed typology of HLCts of geometry and modeling, based on ontologies, represents a great
advance for the automatic generation of designs, which can be repeated with multiple parametric data.
But only a concurrent and parametric design structure can determine what kind of knowledge it is
necessary to store to discover generic structures of design automation and how to store it.

Figure 9. Conjugate diameters ellipse function

Figure 10. Lisp – Mannheim procedure function

HLCts of geometry and modelling can be useful for:

 combining traditional and modern methods of design,
 recognition and generation of designs with geometric patterns,

8

1234567890

WMCAUS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 245 (2017) 062039 doi:10.1088/1757-899X/245/6/062039

 serving as a platform for learning from existing designs,
 serving as a development platform for the creation of new templates.

Only the synergy of mathematics, descriptive geometry, and CAD will enable designers to advance
in the development of new derivative designs in less time and with less effort. In this sense, Stachel [2]
writes that "only people with a deep knowledge of descriptive geometry will be able to make extensive
use of CAD programs" and also that "the importance of mathematics continues to increase even
though computers take charge of the computational work".

Conclusions
If we tackle a design task with traditional procedures, the same can be done with CAD applications.
The study and analysis of the tasks undertaken allow us to carry out generalization of HLCts to
achieve their automation. A thorough analysis will allow us to use the HLCts in tasks not initially
foreseen.

This document proposes a method of automating existing procedures to produce certain designs.
The proposed method is analysed with varied data in the two examples presented, allowing the
following conclusions to be drawn:

1. by using automation processes, it is possible to undertake designs without effort by the user;
2. automation in the generation of designs not only saves time but also increases the quality of the

results and reduces the possibility of human errors;
3. multidisciplinary optimization of design reduces the learning effort and speeds up the

acquisition of graphic skills.
Expert users perform the initial creation of HLCts, but their use and modification do not require

advanced knowledge.

Acknowledgment(s)
This paper has been developed with the financing of FEDER funds under the projects TIN2013-
40658-P and TIN2016-75850-R.

References
[1] Amadori, Kristian, et al. "Flexible and robust CAD models for design automation." Advanced

Engineering Informatics 26.2, pp. 180–195, 2012.
[2] Stachel, Hellmuth. "The status of today’s Descriptive Geometry related education

(CAD/CG/DG) in Europe." Journal of Graphic Science of Japan 41. Supplement 1, pp. 15–
20, 2007.

[3] Hopgood, Adrian A. “Intelligent Systems for Engineers and Scientists”, CRC Press, 2012.
[4] Siddesh, S., and B. S. Suresh. "Automation of generating CAD models." Journal of Mechanical

Engineering and Automation 5.3B, pp. 55–58, 2015.
[5] Ambrosius, Lee. AutoCAD Platform Customization: User İnterface, AutoLISP, VBA, and

Beyond, John Wiley and Sons, 2015.
[6] AutoCAD [computer program]. Autodesk, 2017.
[7] AutoLISP (Part of AutoCAD) [computer program]. Autodesk, 2017.
[8] Celani, Gabriela, and Carlos Eduardo Verzola Vaz. "CAD scripting and visual programming

languages for implementing computational design concepts: A comparison from a
pedagogical point of view." International Journal of Architectural Computing 10.1, pp. 121–
137, 2012.

[9] Tarkian, Mehdi. Design Automation for Multidisciplinary Optimization: A High Level CAD
Template Approach, 2012.

