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Abstract. In this paper, we propose a feasible conjugate gradient method for solving linear 
equality constrained optimization problem. The method is an extension of the Dai-Yuan 
conjugate gradient method proposed by Dai and Yuan to linear equality constrained 
optimization problem. It can be applied to solve large linear equality constrained problem due 
to lower storage requirement. An attractive property of the method is that the generated 
direction is always feasible and descent direction. Under mild conditions, the global 
convergence of the proposed method with exact line search is established. Numerical 
experiments are also given which show the efficiency of the method.    

1. Introduction 
Consider the unconstrained optimization problem 

                                     )(min xf , nRx ,                                                                      (1) 

where : nf R R  is a continuously differentiable function. The conjugate gradient method for 
solving (1) is given by 

                              kkkk dxx 1 ,                                                                                (2) 

where k is the step length, and kd is search direction defined by  
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where k is a parameter. The conjugate gradient method is available for large-scale unconstrained 

optimization because its storage is relatively small. Numerical results [1] showed that, if f  is easy to 

be computed and if its dimension n  is vary large, the conjugate gradient method is still the best choice 
for solving unconstrained optimization problem (1). 

If the objective function ( )f x  is a strictly convex quadratic function, and if k  is computed by the 

exact line search, namely, 
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then the method (2) and (3) is called the linear conjugate gradient method. The linear conjugate 
gradient method was originally propose by Hestenes and Stiefel [2] for solving the linear system of 
equations bAx  and several formulas of k were considered, which are equivalent for strictly convex 

quadratic objective function.  
On the other hand, (2) and (3) is called the nonlinear conjugate gradient method for general 
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unconstrained optimization problem. The nonlinear conjugate gradient method was first proposed by 
Fletcher and Reeves [3]. Some well-known conjugate gradient methods include the Hestenses-Stiefel 
method , Fletcher-Reeves method, Polak-Ribiere-Polyak method, Conjugate-Descent method, Liu-
Storey method, and Dai-Yuan method . In this paper, we are interested in the DY method[4], in which 

k  is defined by  
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where 1 1( ) ( )k k ky f x f x    , and || ||  stands for the Euclidean norm. It was shown in [4] that 

such a method can guarantee the descent property of each direction provided the steplength satisfies 
the Wolfe conditions. In this case, the global convergence of the method was also proved in [4] under 
some mild assumptions on the objective function. 

Recently, in view of the advantage of the conjugate gradient method for solving unconstrained 
optimization problem, Li and Li[5] extend it to the following linear equality constrained optimization 
problem 

)(min xf   

s.t. bAx  ,                                                                        (6) 

where RRf n :  is continuously differentiable function, nmRA  with m n is of full rank, 

and mRb . The direction generated by the method is always feasible and descent direction. Under 
suitable conditions, the feasible Fletcher-Reeves method with exact line search is globally convergent.  

In this paper, we further study the feasible conjugate gradient method for linear equality 
constrained optimization problem. We focus our attention to the DY conjugate gradient method. We 
will extend the DY method for solving unconstrained optimization problem to the linear equality 
constrained optimization problem. 

2. Algorithm 
In this section, we extend the DY method to linear equality constrained optimization problem (6). 

First we simply recall the feasible Fletcher-Reeves method in [5] for solving equality constrained 
optimization problem. For the problem (6), we separate the coefficient matrix A into ),( NBA  , 

where mmRB   is nonsingular. For any Dx , let 
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                                                   NB NxBbBx 11   .                                                           (7) 
The problem (6) is equivalent to the following unconstrained optimization problem 
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In order to get feasible direction, the following lemma is given by Li and Li in [5]. 

Lemma 1. Let kx be the current iterate, 
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Let ( ) ( ) || ( ) ||N N N
k k k k k kz f x d F x d F x       , and kkk dzg  . Similar to the DY 

conjugate method in [4] for solving unconstrained optimization problem, we propose the following 
DY- type conjugate gradient method for solving the linear equality constrained optimization problem 
(8) which we call FDY method, that is, the direction kd is defined by 
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 , 1 1( ) ( )k k ky f x f x    . It is easy to see from (8) and (9) that for any 

0k  , 0kAd  .This implies kd that provides a feasible direction of f at kx . 

Based on the above discussion, we propose a feasible DY method which we call FDY method as 
follows. 

Algorithm 1(FDY method).  
Step1: Given constant 0 , choose an initial point Dx 0 , let 0:k . 

Step2: If || kz , stop, get solution kx . Otherwise go to step 3. 

Step3: Compute kd  by (9). 

Step4: Determine step size k  by some line search. 

Step5: Let kkkk dxx 1 and 1:  kk .Go to step2. 

3. Global convergence 
In this section, we prove the global convergence of Algorithm 1 with exact line search and with Wolfe 
line search respectively. To establish the global convergence theorem of Algorithm 1, we assume that 
the objective function satisfies the following condition that the level set 

)}()(|{ 0xfxfRx n  is bounded.Next, we prove the global convergence of Algorithm 1 with 

exact line search (4). 
Theorem 2. Let the sequence{ }kx be generated by Algorithm 1 with exact line search，then  

                                              .0||)(||inflim 
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Proof. For the sake of contradiction，we suppose that the conclusion is not true. Then there exists 
a constant 0 such that 

                                                       ||)(|| N
kxF , .k                                                         (11)   

From the definition of kd , we have 
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Since the steplength k  is determined by exact line search, it holds that 

( ) ( )k k k kf x d f x g    . 

Recalling the definition of kg , we obtain from (17) that 
2( ) || ( ) || 0N

k k kf x d F x     .                                             (12) 

Since { ( )}kf x is decreasing, it is clear that the sequence { }kx  generated by Algorithm 1 is 

contained in . This implies that { }kx  is bound. That is, there is an infinite index set 1K  such that 
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At the same time, the sequence 1 1{ | }kx k K   is bound. Similarly, there exists an infinite index set 

2 1K K  such that 

2 2
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That is  

                                                  * * *( ) ( )f x f x f  .                                                             (13) 

Notice that the step length k  is determined by exact line search, that is  

1( ) ( ) ( ), 0k k k k k kf x f x d f x d         . 

Let k  , we have that for all 2 1k K K   

                                          * * *( ) ( ), 0f x f x d     .                                                    (14) 

By Taylor’s expansion, there is 

                              * * * * *( ) ( ) ( ) ( )f x d f x f x d o       .                                     (15) 

It is follows from (15) and (12) that when 0   is sufficient small * * *( ) ( )f x d f x  .                        

With (14), we have * * * *( ) ( ) ( )f x f x d f x   .This contradicts (13). This contradiction shows 
that (10) is true. 

4. Numerical experiment 
In this section, we report some numerical experiments about Algorithm 1 with exact line search, and 
compare it with the feasible FR method proposed in [5]. We stop the iteration if the iteration number 
exceeds 5000 or the function evaluation number exceeds 7000 on the following inequality is 

satisfied 510|| kz . 

In this paper, all codes are written in Matlab and run on PC with 2.66 GHZ CPU processor and 
1GB RAM memory and Windows XP operation system. The results are listed in Table1. In Table1, 
Name denotes the name of the test problem, Dim denotes the dimension of the test problems, NF and 
NI denote the number of function evaluations and the iteration number respectively, Time denotes 
CPU time in second.  

In table 1, we test the Algorithm 1 by eleven test problems. We can see from table 1 that the 
method terminates at the solution of all test problems. The results of numerical experiments indicate 
that the proposed method in this paper is efficiency method for some test problems. 

 
Table 1   Numerical Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name Dim 
FFR method FDY method 

NI NF Time NI NF Time 
MAD1 2 2 3 0.0160 1 2 0.0321 
MAD2 2 1 2 0.0150 4 5 0.0160 
MAD4 2 46 47 0.1410 13 14 0.0160 
Hs028 3 14 15 0.0160 58 59 0.0150 
Hs048 5 3 4 0.0160 3 4 0.0160 
Hs049 5 41 42 0.0150 37 38 0.0160 
Hs050 5 10 11 0.0150 11 12 0.0310 
Hs051 5 2 3 0.0160 2 3 0.0160 
Hs052 5 2 3 0.0160 2 3 0.0150 
Wong2 10 130 131 0.2030 106 107 0.0940 
Wong3 20 817 818 1.6400 1266 1267 1.6400 
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