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Abstract. The effects of active correction for the telescopes’ primary mirrors are often 
degraded because the axial fixed points of the primary mirrors usually aren’t able to perform 
active correction. This paper analyzes this problem and proposes a modified active correction 
algorithm to eliminate the adverse influence of the axial fixed points. We use a 1.2m thin 
mirror to simulate the modified algorithm, it shows the modified algorithm can significantly 
eliminate the adverse influence of the fixed points and improve the mirror’s active correction 
effect: the fitting error of the 1.2m thin mirror on the 5th Zernike aberration reduces from 
13nm to 1.6nm, the fitting errors for other Zernike aberrations also significantly reduce. 

1. Introduction 
Active optics is one of the key technologies to build large modern telescopes. By detecting the 
wavefront and correcting the mirror surface correspondingly, active optics can reduce the influence of 
the mirror’s deformations on the beam quality and improve the  observation capability of the large 
telescopes[1,2].  

Figure. 1: (A): configuration of axial supports for an 1.2m thin mirror;  

(B): 1.2 mirror’s surface before active correction, a 5th Zernike aberration is taken for example;  
(C): 1.2m mirror’s surface after active correcting the deformations in (B). 

Thin mirrors are widely used in large modern telescopes. Figure. 1(A) shows a typical axial 
supports’ configuration of a thin mirror, there are 3 axial fixed points on the back of the mirror which 
are used to locate the primary mirror. These points can’t generate axial motion or apply active 
correction forces, which causes an issue: mirror surface around these points can’t be actively corrected 
thus degrading the active correction effect of the mirror(Figure. 1(B) and Figure. 1(C)). Floatation 
support is the most frequently adopted method to solve this problem[3-8], it consists of two steps: 
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firstly, measures the deformations of the mirror, calculates the correction forces(CF) and corrects the 
surface of the mirror; secondly, after the correction in the first step, measures the forces supported by 
the fixed points and modifies CF in term of eliminating the unbalanced moment on the mirror caused 
by the fixed points’ forces. The second step is called the second step correction. But this method also 
has some issues: on one hand, a primary mirror which adopts floatation support has to apply the forces 
to the actuators for two times during each active correction process, which increases the time cost and 
leads to the decrease of correction frequency; on the other hand, the range of the correction forces in 
the first step is usually larger than the one after the second step(which is the range of the final 
correction forces), this increases the motion requirement of the actuators. 

This paper firstly introduces the active correction’s process and analyzes the adverse influence of 
the axial fixed points on the mirror surface’s active correction in section 2. In section 3 we proposes a 
modified algorithm, this new algorithm can eliminate the axial fixed points’ influence without 
introducing the second step correction. In section 4, we verifies the new algorithm via a simulation. 
The result shows the new algorithm is significantly effective: compared with the unmodified algorithm, 
the residual mirror surface RMS after the modified algorithm is greatly reduced. 

2. Principle of the Active Correction 

2.1 Principle of the Active Correction 
Figure. 2 shows the principle of the active correction, it consists of 3 steps: 

(1) Calibrate the actuators’ interacting functions to the primary mirror surface. Firstly, measure W0 
by shooting the reference wave front Wref to the mirror. Secondly, apply unit force to each actuator to 
make the mirror deform from M1(ideal parabolic surface) to M1(1), M1(2), M1(3), … M1(m), then measure 
the corresponding wave fronts Wi(i=1,2,3…m). Lastly, because of the beam reflection at the mirror 
surface, the interacting function of each actuator to the mirror surface is Pi =(Wi -W0)/2, (i=1,2,3…m).  

(2) Measure the deformations of the primary mirror. Firstly, measure and reconstruct the wavefront 
Worigin at the exit pupil of the telescope, as Zernike modes are the most widely used bases in active 
correction, Worigin can be decomposed into Zernike modes here. Secondly, eliminate the first three 
Zernike modes from Worigin to get W. Thus the mirror’s surface before active correction can be 

calculated as 4
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, where Zi is Zernike mode and ai is the coefficient. 

 

Figure. 2: Schematic of the Active Correction Algorithm. 
(3) Calculate the correction force matrix of the actuators via the least square estimation. Assume 

the interacting function of each actuator measured in step (1) is Pi(i=1,2,3…m), the interacting 
function matrix will be P=[P1, P2, … Pm], assume the correction force matrix of the actuators is F=[F1, 
F2, … Fm]T, we have: 
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F can be calculated via the least square estimation as follows: 

1 1
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By applying F to the actuators, the mirror deformations and the wavefront distortion at the exit 
pupil of the telescope could be corrected, which also means the surface of the primary mirror is 
corrected to the ideal parabolic M1. Circulate steps (2) and (3) during the operation of the telescope 
and the mirror surface can be corrected in real time. 

2.2 The Defection caused by the fixed points 
During the implementation of the active correction, when the mirror deformations Wmirror is obtained, 
the algorithm usually will go to step (3) to calculate the correction force matrix F, but this leads to a 
problem. Shown in Figure. 3, curve 1 is the ideal parabolic mirror surface M1 while curve 2 is Wmirror, 
if now we use the actuators to directly correct Wmirror to M1, because the fixed points can’t generate 
active motion, the final surface after active correction will be curve 3. 

 

Figure. 3:  the effect when using the actuators to directly correct Wmirror (profile map). 

Figure. 3 shows that the mirror’s active correction capability at the fixed points is limited, as a 
result the mirror surface after active correction is not an ideal parabolic but a curve with some “dents” 
at the fixed points, which degrades the effect of the active correction. 

3. Modified Active Correction Algorithm 
To reduce the adverse influence of the fixed points, a modified algorithm is proposed. This new 
algorithm firstly modifies the ideal parabolic surface M1 to M1’, then calculates the correction force 
matrix according to Wmirror and M1’. The core idea of the modification is: by adding M1 a piston and 
one or two tilts to get M1’ which overlaps with Wmirror at the fixed points. Below is the detailed 
instruction of this algorithm. 

Figure. 4(A) shows the modification of a 2-dimension M1, assume the coordinates of the two fixed 
points are x1,x2 and the deviations of Wmirror from M1 are s1,s2 ( Figure. 4(A) is a profile map of a 
primary mirror, where M1 and Wmirror are 2-dimension curves). Assume a modification curve Mcorrect 
whose function is y=a+lx, Mcorrect means a piston and a tilt, we have: 

1 1

2 2

x s
a l

x s

   
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   
                                                               (3) 

Equation (3) means: by adding a modification curve Mcorrect, the modified curve M1’(=M1+Mcorrect) 
will overlap with Wmirror at the fixed points(shown in Figure. 4, curve 3). 
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Figure. 4: Process of the modification of M1. 

After obtaining a and l via Equation. (3), we have: 

1 1' correctM M M                                                                (4) 

Figure. 4(B) shows the modified ideal mirror surface M1’ satisfies M1’(x=x1) = Wmirror(x=x1), 
M1’(x=x2) = Wmirror(x=x2), which means M1’ overlaps with Wmirror at the fixed points. To correct Wmirror 
to M1’, because the deviations of Wmirror from M1’ at x=x1 and x=x2 are 0 now, the fixed points actually 
don’t need to generate any shift or motion during the correction, thus the adverse influence of the fixed 
points is eliminated. The mirror surface after active correction will be precisely M1’.  

Notice that M1’ is not the ideal surface M1, the differences between them are a piston(a) and a tilt(l), 
these are actually some new distortions introduced into the telescope system, but they can be corrected 
by the telescope(for example by the secondary mirror) easily at the same time with the primary 
mirror’s active correction process, so at last, we can virtually obtain the ideal parabolic surface M1. 

The reason why we don’t adopt the second and third Zernike modes which are eliminated in step 
(2), section 2.1 as the tilts lx and ly which we need in the modification is that these two Zernike 
distortions can be caused by both the primary mirror and the second mirror, and the two parts can’t be 
separated, thus they are different from lx, ly and can’t be utilized directly here. 

4. Simulation of the Modified Active Correction Algorithm 
A 1.2m thin primary mirror is used to simulate the modified algorithm. Figure. 1(A) shows the 
configuration of the axial supports of the mirror, the diameters of the mirror and its central hole are 
1.2m and 0.14m, the thickness is 50mm, radius-thickness ratio is 24. The material of the mirror is 
glass ceramics. There are 36 axial supports on the back of the mirror, the 21th, 25th and 29th supports 
are axial fixed supports or fixed points, which uniformly distribute on the 2th support ring, the rest 33 
supports are active supports(actuators) which can apply active forces to the mirror. On the lateral side 
of the mirror there are 12 uniformly distributed lateral supports which can apply tangential support 
forces. In addition, there are 4 lateral fixed supports on the top, bottom, left and right of the mirror, 
which limit the 6 degrees of freedom of the mirror together with the 3 axial fixed points. 

The active correction of the 5th Zernike aberration(astigmatism) via the 1.2m mirror is taken as an 
example to verify the effect of the modified algorithm. The simulation is implemented as follows: 

(1) Calibrate the 33 actuators’ interacting functions to the mirror surface and record them as 
Pi(i=11,12,13…22,23…317,318), part of the interacting functions are shown in Figure. 5. 



5

1234567890

ICAMMT 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 242 (2017) 012086 doi:10.1088/1757-899X/242/1/012086

Figure. 5: part of the interacting functions of the active supports. 
(2) Measure the deformations of the mirror. The amplitude of M1 on Z axis is assumed to be 0. The 

mirror surface before active correction is shown in Figure. 6(left) as Wmirror (the radius has been 
normalized) whose RMS is about 100nm. Figure. 6(left) shows that the deviations of Wmirror from M1 
at the 3 fixed points are not zero, which means M1 doesn’t overlap with Wmirror at the fixed points. If 
now we correct Wmirror directly without any modification, the surface after the correction is shown in 
Figure. 6(right), the residual deviation has obvious peaks and valleys at the axial fixed points, the 
RMS of the residual deviation is about 13nm. Meanwhile, the correction forces of the actuators are 
shown in Figure. 7(blue line), the range of the forces is about -27N~40N. 

Figure. 6: left: mirror surface before active correction;  
right: mirror surface after directly correction of  Wmirror. 

Figure. 7: correction forces of the 1.2m mirror’s actuators for correcting Wmirror to M1(blue line) and 
Wmirror to M1’ (red line). The 33 actuators on X axis corresponds sequentially to the actuators 

11,12,13…16,22,23…212,31,32…318 in Figure. 1(A). 
(3) Modify M1. Firstly, the coordinates of the 3 fixed points on X-Y plain are calculated out: 

(0.5586m,0.1497m), (-0.4089m,0.4089m), (-0.1497m,-0.5586m), the deviations from  Wmirror to M1 at 
these 3 points are 33.7nm, -83.3nm, 42.3nm. Secondly, assume a modification curve Mcorrect whose 
function is z=a+lxx+lyy (Mcorrect means a piston aberration and two tilt aberrations, where z axis 
overlaps with the optical axis of the primary mirror), we have the following equations: 
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Solve the equations above and we can obtain Mcorrect:  

2.45 9 1.05 7 9.28 8x ya e l e l e                                             (6) 

Thus M1’ can be obtained via Equation (4). After the modification, the deviations of  Wmirror from 
M1’ at the 3 fixed points are nearly zero. 

(4) Calculate the correction forces for correcting Wmirror to M1’ via the least square estimation. The 
interacting function matrix of the actuator alignment is P=[P11 P12 … P317 P318], assume the correction 
forces matrix to be F, then F could be computed via Eq. (7). At last, apply F to the actuators and at the 
same time use the second mirror to correct the extra piston a and tilts(lx, ly) to accomplish the active 
correction of the primary mirror.   

1
1( ) ( ' )T T

mirrorF P P P M W                                                          (7) 

Figure. 7(red line) shows the values of F, the range of the forces is about -8.5N~7.3N, which 
significantly decreases compared with the range of the blue line. 

The residual deviation of the 1.2m mirror surface after the correction via the new algorithm is 
shown in Figure. 8, contrasted with Figure. 6(right), the residual deviation of the mirror surface is 
significantly reduced, the peaks and valleys at the 3 fixed points basically disappear, the RMS of the 
residual deviation is reduced from 13nm to 1.6nm. 

Figure. 8: the residual deformations of the 1.2m mirror surface after the correction with modified 
algorithm. 

Figure. 9: the effects of the correction of the 1.2m thin mirror on different Zernike aberrations with 
unmodified and modified algorithm. 

The effect of the modified correction algorithm on correcting the 4th~15th Zernike aberration via 
the 1.2m mirror is also simulated. Set the original mirror deformation to about 100nm, the effects of 
the active correction of the mirror with unmodified and modified algorithm are shown in Figure. 9, 
where the residual deviation is the ratio of mirror surface RMS after and before active correction. 
Figure. 9 shows that contrasted with the unmodified algorithm, the residual deviation of most Zernike 
aberrations after the correction improve significantly when adopting the modified algorithm. In 
addition, the range of the correction forces also decreases. 
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5. Conclusion 
This paper firstly introduces the principle of active correction and analyzes one of its problem - the 
axial fixed points may degrade the primary mirror surface’s active correction effect because they can’t 
perform active axial motion; Secondly proposes a modified active correction algorithm which can 
eliminate the adverse influence of the fixed points; Lastly applies the algorithm to a 1.2m thin mirror 
to verify the new algorithm. The simulation shows that this new algorithm can effectively eliminate 
the influence of the fixed points, the RMS of the residual deviations of the mirror surface decreases 
significantly. 
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