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Abstract. To balance the robustness and the convergence speed of optimization, a novel hybrid 

algorithm consisting of Taguchi method and the steepest descent method is proposed in this 

work. Taguchi method using orthogonal arrays could quickly find the optimum combination of 

the levels of various factors, even when the number of level and/or factor is quite large. This 

algorithm is applied to the inverse determination of elastic constants of three composite plates by 

combining numerical method and vibration testing. For these problems, the proposed algorithm 

could find better elastic constants in less computation cost. Therefore, the proposed algorithm 

has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms. 

1. Introduction 

In engineering applications, optimization is often required to enhance the performance of a material or 

structure and to reduce its weight or cost at the same time. Recently, stochastic methods such as genetic 

algorithm (GA), simulated annealing (SA), particle swarm optimization, ant colony optimization, and 

immune algorithm have been widely and successfully applied in various engineering problems. 

However, one drawback of stochastic methods is the large times of function evaluation. Taguchi method 

is a statistical methodology to analyze tested data for determining the effects of various factors and 

optimizing their levels. Taguchi method using orthogonal arrays could reduce the number of tests even 

when the number of factors is quite large. However, since Taguchi method is concerned with the discrete 

level of factors, it is troublesome to handle the continuous values of factors. 

Among different algorithms for optimization, fast convergence speed and robustness in finding the 

global optimum are always concerned. However, it is not easy to be satisfied simultaneously by just a 

single algorithm. Therefore, there is an increasing interest to propose hybrid approaches [1-4] to avoid 

premature convergence towards a local minimum and to reach the global optimum.  

Similar to the above attempts, it is desired to propose a method to balance the robustness and the 

convergence speed. Hence, a novel hybrid algorithm is proposed in this work. This novel hybrid 

algorithm consists of Taguchi method and the steepest descent method. Three composite plates 

discussed by other researchers are chosen to test the applicability of the proposed algorithm for the 

inverse determination of elastic constants of materials by combining numerical method and vibration 

testing.  

2. Gradient Taguchi Method 

By using orthogonal arrays, Taguchi method could quickly find the optimum combination of the levels 

of various factors, even when the number of level and/or factor is quite large. In real applications, the 
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number of level is common to be two or three. Taguchi orthogonal array is usually represented as La(Q
b), 

where a denotes the number of experiments, Q is the number of levels, and b is the number of factors. In 

the present study, the number of level is always chosen as two. For example, the Taguchi orthogonal 

array for three factors is chosen to be L4(2
3). The main effect of each level j of each factor i, ijf , is 

calculated according to Eq. (1), and the difference of the main effect of each factor i, ifd , is calculated 

according to Eq. (2). 
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In these equations, kF  is the experiment value. The Kronecker delta 1k  when the kF  value is from 

the factor i and the level j, otherwise its value is zero. Also, N is the number of experiments that are 

accounted during the summation. In general, when the minimum is the better, smaller ijf  represents 

better level of j for factor i, and larger ifd  denotes that factor i has profound effect as compared to other 

factors. 

From the values of ijf , the optimum combination of the level of each factor could be obtained. 

However, in some circumstances, this combination is not the best, and some modifications need to be 

done to get the optimum combination. By using the two levels of factor i, its gradient 0,if  is calculated 

as  
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 denote the first and second levels. Hence, the gradient of all factors could be 

represented as 
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The index 0 in Eqs. (3) and (4) is used to represent the number of iteration. Then, the point of next 

generation is obtained as 

i

ii fxx  ~~ 1                                                              (5) 

where   is the step length, “+” is for the maximum problem, and “-” is for the minimum problem. To 

obtain the appropriate step length, the steepest descent is used. An initial step length, H, could be 

guessed or  set to be 1 in this work. Then, three different step lengths are created as 0, 1, and 2 times of 

H, and the corresponding values of objective function are 0Y , 1Y , 2Y , respectively. Also, define a value 

D as 

201 224 YYYD                                                           (6) 

If 0D , let   be equal to H/3. Otherwise, for the maximum problem, 

 
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For the minimum problem, 

 
D
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From the Taguchi method, the best combination of the level of each factor, b
~

, could be obtained 

according to the main effects and the modification. However, there is one point named base point for 

each generation, x~ , which could be further used to accelerate the searching. At this point, the value of 

each factor is equal to the average of the two levels. In some circumstances, the base point may provide 

even better choice than the best value from main effect analysis. By considering both the best point from 
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Taguchi method and the base point for iteration number i, the possible values for the next iteration are 

i

i fb 
~

 and i

i fx  ~ . Here, “+” is for the maximum problem, and “-” is for the minimum problem.  

3. Inverse Determination Examples 

To apply the present optimization method to engineering problems, the inverse determination of elastic 

constants of materials by combining numerical method and vibration testing is considered. Three 

composite plates discussed by other researchers are chosen. Plate A is a unidirectional glass/epoxy 

laminate with 12 layers, its dimensions are 268x150x1.43 mm and its density is 1932 kg/m3 [5]. Seven 

natural frequencies measured are 72.3, 97.6, 176.7, 197.4, 238.3, 277.5, 348.0. Plate B is a symmetric 

cross-ply laminate with 14 layers, its dimensions are 191x282x2.87 mm and its density is 1624 kg/m3 [6]. 

Eight natural frequencies measured are 72.2, 108.6, 182.7, 293.9, 308.7, 343.5, 369.4, 442.6. Plate C is 

a commercially pressed, woven-glass epoxy board having 18 fabric layers. Its dimensions are 

120x90x1.19 mm and its density is 1755 kg/m3 [7]. Eight natural frequencies measured are 138.7, 261.1, 

374.3, 463.0, 536.5, 713.3, 771.0, 834.1.  

For all these three plates, the optimization problem could be stated as follows: 
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where F  is the objective function that is a function of the design variable set  mxxxxX ,...,,, 321 . 

Here m  is the number of the design variables ix . The natural frequency obtained by vibration testing is 

denoted as if  and that obtained by finite element analysis is represented as if . The number of natural 

frequencies used in the objective function is 0n . The elastic constants are assigned as design variables 

and restrained to be positive. Since all these three plates are considered to be thin and each layer is 

transversely isotopic, only four elastic constants are necessary and they are the design variables. In the 

finite element analysis to calculate the natural frequencies, 100 shell elements were used for all three 

plates. 

Table 1. Elastic constants obtained for composite plate A. 

 Number E1(GPa) E2(GPa) υ12 G12(GPa) Obj. Fun. 

Ref [5]  44.20 17.70 0.195 7.20 0.000956 

ARSAGA 100 45.30 17.91 0.202 7.42 0.000085 

GTM 102 45.22 17.83 0.215 7.44 0.000076 

 

Table 2. Elastic constants obtained for composite plate B. 

 Number Ex(GPa) Ey(GPa) υxy Gxy(GPa) Obj. Fun. 

Theory  23.30 13.80 0.217 2.70 0.000513 

ARSAGA 97 23.24 14.22 0.229 2.71 0.000101 

GTM 171 23.44 14.20 0.241 2.71 0.000030 

 

For plate A and under the condition of plane stress, the obtained elastic constants are listed in Table 1. 

Since the present algorithm may be dependent on the initial guess, different runs may result in different 

results. Hence, five runs are executed to check its repeatability, and only the best one is shown. The 

reference results in the first row were obtained by Rikards et al. [5]. The best results denoted as 
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ARSAGA were obtained by an adaptive genetic algorithm combined with simulated annealing [1]. The 

five runs by the present method obtain very close results and its repeatability is excellent. As shown in 

the table, from the viewpoint of the objective function, the present method has the lowest value. In the 

table, the column denoted as “Number” represent the generation number for ARSAGA and the iteration 

number for the present method. Since the population size of the present method is much less than that of 

ARSAGA, the convergence speed of the present method is much superior that that of ARSAGA. 

Table 3. Elastic constants obtained for composite plate C. 

  Number E1(GPa) E2(GPa) υ12 G12(GPa) Obj. Fun. 

Ref [7]  16.47 16.49 0.207 2.44 0.001197 

ARSAGA 71 16.74 16.72 0.039 2.48 0.000759 

GTM 59 16.92 16.57 0.174 2.46 0.000798 

 

Since plate B is a cross-ply laminate, the effective elastic constants for the whole plate are sought in this 

work. Five runs by the present method are executed and the repeatability of the obtained effective elastic 

constants is excellent. As shown in Table 2, the row denoted by “Theory” represents the results 

calculated by the classic lamination theory. As the value of the objective function is utilized to compare 

the present method with the theory and ARSAGA, it is evident that the best result of present method is 

superior to the others. Table 3 shows the elastic constant obtained for the woven-glass epoxy layer from 

plate C. The reference values in the first row were from the results of Hutapea and Grenestedt [7]. 

Similarly, these results indicate that the present method have excellent repeatability as well as fast 

convergence speed and could find the best results.  

4. Summary 

In this work, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is 

proposed. The inverse determination of elastic constants of three composite plates by combining 

numerical method and vibration testing is used to test this novel hybrid algorithm. The results imply that 

the present method have excellent repeatability and fast convergence speed to find the best results as 

compared to other methods. 
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