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Abstract. We consider flow of viscous fluid in the capillaries under assumption that the 

contact angle of the curve varies over the length of the capillary. For the two laws of change 

we obtain estimates of the distance of meniscus from its initial position and reduction of its 

movement speed. It was found that the results of the evaluations are consistent with the 

existing physical concepts. 

1. Introduction 

Fluid flow in capillaries (capillary flow) is often found in nature and technology; it plays an important 

role in the plant and animal life, when filtering the fluid media in the grounds, in the drying processes 

of dispersed bodies, media purification from mechanical impurities, impregnation of porous materials 

and in many other cases. Fundamental principles of capillary fluid flow theory are presented in [1-6 

and etc.]. Let’s name some of them. 

In general case, the fluid transfer in the capillaries occurs by both molecular (diffusive) and 

convective mechanisms. First is caused by the difference in concentration of a substance along the 

length of the capillary. It is important to note that because of braking action of the capillary solid walls 

the diffusion coefficient is much smaller than that in a free fluid and this fluid transfer mechanism will 

be the most significant in very thin capillaries.  

When capillary lateral dimensions are relatively large the convective transfer is dominating its 

intensity is determined, firstly, by the pressure drop along the length of the capillary, secondly, by the 

temperature gradient along it, thirdly, by the action of the surface tension forces at the interface 

between fluid and gaseous medium (meniscus), mass forces, in particular, gravitational forces.  

The surface tension force is the force acting on a contour unit length of the media interface and is 

characterized by the surface tension coefficient σ also called surface tension. The magnitude of the 

surface tension coefficient depends on the material of media in contact, temperature, presence of 

adsorbed (surface active) agent on the fluid surface and other factors. 

 

2. Part of mathematical modeling 

Taking into account the surface tension, in the absence of mass forces at the contact boundary of 

immiscible viscous fluid and gaseous medium the following relations are written [3]:  

𝑝𝑛𝑛𝑙 + 𝑝𝜎 = 𝑝𝑛𝑛𝑔, 𝑝𝑛𝑠𝑙 + 𝑝𝑠 = 𝑝𝑛𝑠𝑔,                                           (1) 

They characterize the balance of loads acting on the interface surface; 

𝑣𝑛𝑙 = 𝑣𝑛𝑔 = 𝑤𝑛,𝑣𝑠𝑙 = 𝑣𝑠𝑔 = 𝑤𝑠. 
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Here, the subscripts 𝑙, 𝑔 mean the parameters of the fluid and gaseous medium, respectively; 𝑝𝑛𝑛, 

𝑝𝑛𝑠 – normal and tangential components of stress 𝑝𝑛; 𝑣𝑛, 𝑣𝑠;  𝑤𝑛, 𝑤𝑠 – components of motion velocity 

of medium, interface surface; 𝑝𝜎 , 𝑝𝑠 = (𝑔𝑟𝑎𝑑 𝜎)𝑠 – capillary pressure, tangential force per unit area.   

In the simplest case, when 𝑝𝑛𝑛𝑙 ≈ −𝑝𝑙,𝑝𝑛𝑛𝑔 ≈ −𝑝𝑔, the surface tension along the contact boundary 

is constant ((𝑔𝑟𝑎𝑑𝜎)𝑠 = 0), the capillary – tube of radius 𝑟, meniscus has a shape of a spherical 

segment, capillary pressure [5]  

𝑝𝜎 = ±2𝜎/𝑅̃. 

Here, 𝑅̃ – mean radius of the interface curvature, 𝑅̃ = 𝑟/ cos 𝜃, 𝜃 – limiting wetting angle; plus sign is 

selected for a convex fluid surface, minus sign – for a concave (𝑝𝜎 < 0).  

In accordance with the Young’s equation [4-6]  

cos 𝜃 = (𝜎𝑠𝑔 − 𝜎𝑠𝑙)/𝜎,                                                          (2) 

where 𝜎𝑠𝑔, 𝜎𝑠𝑙 – surface tension at the interfaces solid body – gas, solid body – fluid.  

In work [6] it is shown that the contact angle determined according to (2) gives the angle value at 

the three phase boundary of the media in contact on a microscopic scale. The macroscopic contact 

angle depends on the system geometry which is, in turn, under a great influence of the mass forces, 

structure and material of the solid body surface, medium temperature.  

When studying the capillary flow of fluid in the above-mentioned cases it is usually considered that 

capillary is a tube, probably, with varying along the length cross-section [5], the media in a capillary 

are under action of gravitational force, along the movement of meniscus the limiting wetting angle 

remains constant. 

Analyzing the available result you can conclude that during the spraying of polymeric powder 

materials [7-10] at the stage of coalescence of fluid particles situated on the treated body surface, their 

spreading [8], the medium movement is similar to the capillary one. For better understanding of 

peculiarities of the given processes taking into account the specificity of particles coalescence we 

consider the capillary flow of fluid between two plates situated at a small distance from each other 

𝑑 = 2𝑟. Let’s assume that the meniscus cross-section is close to a circular arc of radius 𝑅 its surface is 

under the influence of pressure 𝑝𝑔 from the gas side, pressure 𝑝𝑃 – fluid. Let’s also assume that during 

the meniscus movement the limiting wetting angle varies according to a particular law. 

Assuming that the surface of the channel walls is wettable the contact angle 0 < 𝜃 < 𝜋/2, we 

represent the dependence 𝜁 = cos 𝜃 in the form: 

𝜁 = 𝜁(ℎ̅) = 1 − (1 − 𝜁𝐾̅) · ℎ̅.                                                    (3) 

Here ℎ̅ = ℎ/ℎ𝐾,ℎ = ℎ(𝜏) – meniscus distance from the original position occupied by it in the capillary 

at the time 𝜏 = 0; 

ℎ𝐾 = 𝜎𝜁𝐾/∆𝑝𝑐
∗, 𝜁𝐾 = cos 𝜃𝐾, 

𝜃𝐾 – characteristic limiting wetting angle for the considered system solid body-fluid-gas, parameter 

𝜁𝐾̅ ≥ 𝜁𝐾, ∆𝑝𝑐
∗ = 𝑝𝑔 − 𝑝𝑝

∗  – pressure drop of media in contact on the meniscus surface.  

The average velocity of the meniscus movement will be:  

𝑣̃𝑀 = 𝑑ℎ/𝑑𝜏 = ℎ𝐾 · 𝑑ℎ̅/𝑑𝜏. 

Considering as it is customary in the capillary hydrodynamics that the given movement of fluid is 

laminar, close to the stationary (quasi-stationary) to describe the average velocity of its movement in 

the absence of the mass forces we use the Poiseuille solution:  

𝑣̃П = 𝑟2(𝑝𝜎 − ∆𝑝𝑐)/(3𝜂ℎ𝐾ℎ̅), 

where 𝜂 – fluid viscosity, ∆𝑝𝑐 = 𝑝𝑔 − 𝑝𝑝, when it flows plane-parallel between the plates  

𝑝𝜎 = 𝜎𝜁(ℎ̅)/𝑟. 

Equating the velocities 𝑣̃𝑀 and 𝑣̃П, after a series of transformations we obtain the equation:  

𝑑ᴂ̅ − 𝛿𝑃̅ · 𝑑ᴂ̅/ᴂ̅ = 𝛿𝜂̅𝑑𝜏.                                                 (4) 

Here function ᴂ̅ = ᴂ̅(ℎ̅) = 𝛿𝑃̅ − 𝛿𝜁̅ℎ̅, parameters 

𝛿𝑃̅ = 𝜎/𝑟 − ∆𝑝𝑐, 𝛿𝜁̅ = 𝜎(1 − 𝜁𝐾̅)/𝑟,𝛿𝜂̅ = (𝜎(1 − 𝜁𝐾̅ )/ℎ𝐾 )2/(3𝜂). 
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Since for 𝜏 = 0 the value ℎ̅ = 0, ᴂ̅ = 𝛿𝑃̅, integrating (4) we find the dependence 𝐹(ℎ̅, 𝜏) = 0: 

ℎ̅ + 𝜎̅𝑃 ln(1 − ℎ̅/𝜎̅𝑃) = −𝜎̅𝜂𝜏,                                                    (5) 

where 𝜎̅𝑃 = 𝛿𝑃̅/𝛿𝜁̅ = (𝜎 − 𝑟∆𝑝𝑐)/(𝜎(1 − 𝜁𝐾̅)),𝜎̅𝜂 = 𝛿𝜂̅/𝛿𝜁̅ = 𝑟𝜎(1 − 𝜁𝐾̅)/(3𝜂ℎ𝐾
2 ). 

Hence, the average velocity of the meniscus movement in the capillary  

𝑣̃𝑀 = 𝑣̃𝑀(𝜏) = (𝛿𝑃̅𝑟2/3𝜂ℎ)(1 − ℎ̅/𝜎̅𝑃).                                            (6) 

If the ratio ℎ̅/𝜎̅𝑝 ≪ 1, then from (5) and (6) we obtain the estimate of the functions ℎ(𝜏), 𝑣̃𝑀(𝜏): 

ℎ ≈ (2𝑟(𝜎 − 𝑟∆𝑝𝑐)𝜏/(3𝜂))
1

2⁄ ,                                                     (7) 

𝑣̃𝑀 ≈ (𝑟(𝜎 − 𝑟∆𝑝𝑐)/6𝜂𝜏)
1

2⁄ ≈ ℎ/(√2𝜏). 
It is seen that immediately after the beginning of fluid movement in the capillary the remoteness of 

the meniscus increases proportionally to √𝜏 at that velocity of its displacement decreases with time, 

the movement is slowed down. According to (6) the meniscus stops when ℎ̅ = 𝛿𝑃̅ i.e. at the distance 

from the movement start  

ℎ = ℎ𝑂𝐾 =
𝑟𝜁𝐾(1 − ∆𝑝̅𝑐)

(∆𝑝̅𝑐(1 − 𝜁𝐾̅))
, 

where ∆𝑝̅𝑐 = 𝑟∆𝑝𝑐/𝜎– dimensionless pressure drop and 0 < ∆𝑝̅𝑐 < 1 0 < ∆𝑝̅𝑐 < 1. 

In accordance with (7) time to the meniscus stop will be approximately,  

𝜏 = 𝜏𝑂𝐾 ≈ 1.5ℎ𝑂𝐾
2 𝜂/(𝑟𝜎(1 − ∆𝑝̅𝑐)).                                           (8) 

From formula (8) it follows that the time to the meniscus stop is smaller the smaller are the fluid 

viscosity, the capillary width, the greater is the surface tension. The given regularities are quite 

consistent with the existing physical notions.  

In the considered case the contact angle 𝜃 increases (see (3)) along the meniscus movement. 

However, the situation where on the contrary the angle 𝜃 decreases starting from 𝜃𝐾 is of great 

interest. In this case, we assume that dependence 𝜁 = 𝜁(ℎ̅) is described by the relationship: 

𝜁 = 𝜁(ℎ̅) = 𝜁𝐾 + (𝜁𝐾̅ − 𝜁𝐾)ℎ̅. 

By analogy with the previous case we introduce the auxiliary function ᴂ∗ = ᴂ∗(ℎ̅) = 𝛿𝑃
∗ + 𝛿𝜁

∗ℎ̅, 

где 𝛿𝑃
∗ = 𝜁𝐾𝜎/𝑟 − ∆𝑝𝑐, 𝛿𝜁

∗ = 𝜎(𝜁𝐾̅ − 𝜁𝐾)/𝑟, parameter 𝛿𝜂
∗ = (𝜎(𝜁𝐾̅ − 𝜁𝐾)/ℎ𝐾)2/(3𝜂), using which 

we obtain the equation for finding ᴂ∗ : 
𝑑ᴂ∗ − 𝛿𝑃

∗𝑑ᴂ∗/ᴂ∗ = 𝛿𝜂
∗𝑑𝜏.                                                    (9) 

Taking into account that at the initial time 𝜏 = 0 (ℎ̅ = 0) function ᴂ∗ = 𝛿𝑃
∗ , integrating (9), we 

determine: 

ℎ̅ − 𝜎𝑃
∗ ln(1 + ℎ̅/𝜎𝑃

∗) = 𝜎𝜂
∗𝜏, 

where 𝜎𝑃
∗ = (𝜁𝐾 − ∆𝑝̅𝑐)/(𝜁𝐾̅ − 𝜁𝐾),𝜎𝜂

∗ = 𝑟𝜎(𝜁𝐾̅ − 𝜁𝐾)/3𝜂ℎ𝐾
2 . 

At that the average velocity of the meniscus movement  

𝑣̃𝑀 = 𝑣̃𝑀(𝜏) = (
𝑟2𝛿𝑃

∗

3𝜂ℎ
) (

1 + ℎ̅

𝜎𝑃
∗ ), 

approximately (ℎ̅/𝜎𝑃
∗ ≪ 1) 

ℎ ≈ (2𝑟𝜎(𝜁𝐾 − ∆𝑝̅𝑐)𝜏/3𝜂)
1

2⁄ ,                                                (10) 

𝑣̃𝑀 ≈ (𝑟𝜎(𝜁𝐾 − ∆𝑝̅𝑐)/6𝜂𝜏)
1

2⁄ ≈ ℎ/√2𝜏. 

In this case, in contrast to the previous one when changing the variable 𝜁 from 𝜁𝐾 to 𝜁𝐾̅(0 < ℎ̅ <

1) the velocity of the meniscus movement is not equal to zero, the meniscus does not stop. After the 

lapse of control time 𝜏𝐾 from the beginning of the meniscus movement it will shift approximately at a 

distance ℎ𝐾 determined by the formula (10) and velocity of its movement is 𝑣̃𝐾 ≈ ℎ𝐾/√2𝜏𝐾. For fixed 

𝑟, 𝜁𝐾, ∆𝑝̅𝑐, time 𝜏𝐾 distance of the meniscus from the initial position increases with increasing of the 

surface tension 𝜎 and decreasing of the fluid viscosity 𝜂 proportionally to √𝜎/𝜂.  

3. Conclusions 
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In conclusion note that within the applied approach it is possible to take into account the impact on the 

dynamics of the meniscus movement in the capillary of the mass forces, change over time of the 

pressure drop of the media in contact, temperature.  
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