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Abstract. Dissimilar material pipes in a power plant boiler water piping system are used to 
transmit water at various temperatures, either in extremely high temperature water or room 
temperature water. In this study, tailored orbital welding of dissimilar material of Stainless 
Steel (SS) 304 and British Steel (BS) 1387 were performed by Gas Metal Arc Welding 
(GMAW) with automated fixed nozzle-rotational jig. This study focused on GMAW 
parameters variation effects on mechanical properties of SS304 and BS1387 dissimilar material 
tailored orbital welding. The weldment quality was tested by performing non-destructive dye 
penetrant test. The tensile strength and microhardness were studied to verify the influence of 
welding parameters variations. Design of Experiment (DOE) was employed to generate 
process parameter using Response Surface Methodology (RSM) method. Welding parameters 
that were arc current, arc voltage and travel speed as input response, whilst, tensile strength and 
microhardness as output response. Results from non-destructive test showed no major defect 
occurred. The tensile strength and microhardness increased when arc current and voltage 
increased and travel speed decreased. Microhardness at weldment was higher than base 
material. 

1. Introduction 
Welding is a versatile joining process that is applicable to almost all types of materials. It is one of the 
permanent joining processes that produce coalescence of the material by heating workpiece to the 
melting temperature with or without the existence of pressure or by the application of pressure itself 
and with or without the use of filler material for metal or non-metallic materials. Welding technique 
has been widely used in various industries such as automotive, oil and gas, aerospace, and many 
others. There are various types of welding and it differs according to the heat source, process and type 
of welded material such as, shielded metal arc welding (SMAW), gas metal arc welding (GMAW), gas 
tungsten arc welding (GTAW) and laser welding. In many industries, welding plays an important role 
in reducing the production cycle time, thus reducing the delivery time [1]. Orbital welding is a joining 
process of tubes of similar thickness. It was one of the major improvements in pipe welding 
technology since 1980s. The orbital arc welding produces high quality of welded seams and has good 
repeatability. It is an expansion to manual welding process as it increases speed and ensures 
repeatability [1]. 

Tailored orbital (TO) is welded tubular product made of tube from different materials of different 
thickness or coatings to component or other tubes, depending on the application in taking advantages 
in cost, weight and function.  If the material joint is different to each other, it is also known as 
dissimilar metal joint (DMJ). The advantages of TO technology are it can help to improve the 
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production processes as they reduce material requirements and steps, reduce overall part weight, 
improve functionality, reduce costs and allow greater forming freedom [2]. 

One of the most common industries that apply tailored orbital welding (TOW) is in power plant 
boiler system as an example shown in Figure 1. In power plant industry, there are various components 
or systems operating at different service conditions hence appropriate materials are used for high 
temperatures or low temperatures condition [3-7].  Materials used are selected depending on the 
requirement of working environment; high temperature require high properties steel such as stainless 
steel (SS) and low properties steel such as carbon steel (CS) for low temperature is necessary [3]. Due 
to economic pressure, the application of TOW is essential in power plant because it is able to 
minimize requirement on high performance steel and maximize steel capabilities at appropriate area 
[8][6-7].  

 
Figure 1. Example of TOW application in power plant [9] 

There are various steel combinations in dissimilar material such as between CS and SS, ferritic 
steel and SS, and martensitic steel and austenitic stainless steel, and it depends on its application. CS 
and SS is the most common steel combination in TOW process applied at power plant due to 
economic and technical reason. Akbari and Sattari-Far [3] performed dissimilar material of CS A106B 
and SS A240-TP304 to carry out failure analysis on instance steam generators of power plants, 
Hajiannia et al. [4] used CS A 335 and SS 347 to replicate the heat exchangers of power plant and Lee 
et. al. [6] utilized CS SPPS 42 and SS304 as both materials were commonly found in power plant due 
to economic and technical reasons. 

In TOW, welding is the most common method used as heat source. GTAW was used by Akbari 
and Sattari-Far [3], Hajiannia et al. [4] and Lee et al. [6] to perform TOW. The GTAW is able to 
produce high quality weld. However, it requires high skill welder to control both hands and increased 
agility. In order to attract the interest of power plant industries, GMAW was used as heat source for 
this research study. The study of TO welding using GMAW was performed using SS wire as filler 
material. The study was carried out by automatic feeding of a continuous consumable electrode and 
fixed nozzle-rotational jig.  Thus, dependence on high skill welder was replaced by the usage of fixed 
nozzle-rotational jig. 

The objectives of the study are to correlate the effect of different GMAW parameters on the tensile 
strength and microhardness variations of the TOW of SS304 and BS1387. 

2. Experimental Methods 

2.1. Material 
The materials used in this experiment were two different types of pipe material with the same outside 
diameter (OD), different inside diameter (ID) and different thickness. The pipe materials used were 
SS304 and BS1387. The SS304 had 60.0mm OD, 56.40mm ID and 3.60mm thickness. Meanwhile, 
BS1387 had 60.00mm OD, 57.00mm ID and 3.00mm thickness. The filler material used in this 
experiment was ER 308L SS with 1.2 mm diameter. 
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2.2. Design of Experiment 
The welding parameters were generated by using RSM; Box Behnken function in the Design Expert 
software. The three input variables or factors were welding current (A), welding voltage (V) and travel 
speed (RPM), and the two output variables or response, were tensile strength (MPa) and Vickers 
microhardness (HV). Each factor was subjected to two levels which were low and high levels. Table 1 
shows the level of factors for the GMAW processes. By having three input variables and two output 
variables with five centre points per block, the total runs generated were 17 runs, or set of parameters. 

 
Table 1. Levels of parameters factors for GMAW processes 

Input variables (Factors) Units Low Level (-1) High Level (+1) 
Arc Current A 150 170 
Arc Voltage V 17 21.5 
Travel Speed RPM 2 4 

2.3. Welding Process 
Pipes were held on the rotational jig with 90° or perpendicular to the welding nozzle and with 20.0 
mm distance. The nozzle set on the centre of weld line. The shielding gas that was used in this 
experiment was a mix of 80% argon and 20 % CO2. Rotational jig was used in this experiment to hold 
and rotate the pipe to perform tailored orbital welding. The rotational jig used was ANYEKE welding 
positioned APL-100 model. The rotational jig was connected to the welding machine used. The 
welding machine used was Fronius TransSynergic 4000 GMAW machine with VR 4000 wire feed 
system. 

2.4. Dye Penetrant Test 
The dye penetrant test was conducted according to AWS D1, with the following steps; pre-cleaning 
the surface using the Cleaner to clean the surface and make the surface smooth enough to wipe off the 
penetrant without leaving residue. Then, applying the penetrant, with light layer sprayed on the pipe 
with around 50.0 mm distance. The penetrant was let to permeate into crack and voids if any for 30 
minutes. After 30 minutes, the penetrant was removed using cleaner and cloth. Then, applying the 
developer with light layer sprayed on the pipe with distance around 50.0 mm. The developer was dried 
for 30 minutes. Then, the pipe was evaluated and checked for any defects appeared. 

2.5. Tensile Testing and Microhardness Measurement 
For tensile test, these pipes were cut into dimensions in accordance with ASTM E8M-4 tension test 
specimens for large-diameter tubular products. AG-I Shimadzu Universal Testing Machine was 
employed. 

For microhardness test, the sample was cut and the test was conducted in accordance with ASTM 
E92 for Vickers test. The microhardness test was performed by using Mitutoyo HR-523 machine, 
Vickers Microhardness Tester. The microhardness measurement was carried out by applying a load of 
0.1 kgf with 15 sec dwell time. 

3. Results and Discussion 

3.1. Macrostructure 
From the 17 samples, there was no major defect on the surface of the weldment. However, there are 
mostly series of red dot at the start-end of the weldment. Figure 2 shows sample 1 (160 A, 19.25 V 
and 3 RPM) with red dots at the start-end weldment. Dwivedi and Sharan [10] claimed that the red dot 
appearance indicates pits or porosity and series of red dots indicates crack or cold shuts. Based on the 
dye penetrant results, some samples had series of red dots while some had single red dot at start-end 
point. This indicates porosity and crack had occurred during the welding process, due to lack of fusion 
or inadequate weld at start-end point as supported by Siegel [11]. However, no significant porosity or 
crack was observed at the cross section of the weldment (Figure 3).  
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Figure 2. Sample no.1 of TOW with 160 A, 19.25 V and 3 RPM as parameter shows red dots at the 

start-end. 
 

 
Figure 3. Cross section of the weldment of SS304 and BS1387. 

3.2. Base Material Characterization 
Base materials were charactierized by using tensile test and microhardness test to determine the tensile 
properties and microhardness values. The results were used as the benchmark for the weldment results 
later. Table 2 shows the tensile properties and microhardness values for SS304 and BS1387. The 
SS304 had 683.785 MPa tensile strength and 217.6 HV microhardness. Meanwhile, BS1387 had 
390.766 MPa and 187.1 HV microhardness. However, BS1387 had lower elasticity with 5160.36 MPa 
Young’s Modulus as compared to SS304 which had 5364.67 MPa Young’s Modulus. 
 

Table 2. Tensile Properties and microhardness of SS304 and BS1387 base material 

Base Material 
Tensile Properties Microhardness 

Vickers (HV) Tensile Strength (MPa) Young’s Modulus (MPa) 
SS304 683.785 5364.67 217.6 

BS1387 390.766 5160.36 187.1 

3.3. Process-properties Relationship  
Response Surface Methodology (RSM) was used to analyse the result obtained from the welding 
process and to understand the relationship between welding parameters with mechanical properties of 
TOW. The factors were welding current, welding voltage and travel speed, while responses were 
tensile strength. The design also analysed which factor influenced respond the most. All analysis was 
done by using Design Expert software. From this experiment, the highest tensile strength value was 
351.35 MPa from sample 7. Meanwhile, the lowest tensile value was 249.79 MPa from sample 11. 
The highest microhardness value of weldment was 249.32 HV from sample 12, and the lowest 
microhardness value was 178.46 HV from sample 14. 
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3.4. Tensile Strength 

3.4.1. Polynomial Equation for RSM Tensile Strength Model  
In Design Expert 7 software, the appropriate polynomial equations were determined. It represented the 
relationship between the input parameters and the output response. It was done by carrying out SMSS 
and ‘lack of fit’ test. Both analyses suggested the quadratic equations to model and calculate the 
relationship between input parameters and micro results. The quadratic equation was the most 
significant with 0.0209 p-value for SMSS and 0.7187 p-value for lack of fit test. 

3.4.2. ANOVA Analysis of the Response Surface Quadratic Model for Tensile Strength  
ANOVA analysis for the quadratic model for tensile is shown in Table 3. The “Model F Value” of 
4.89 implied that the model was significant. There was only 2.41 % chance that a “Model F-value” 
this large could occur due to noise. This implied that the model did represent the data within the 
required 90% confidence interval. The most significant was model term C (travel speed) with p-value 
of 0.0365. However, model term A (arc current) and model term B (arc voltage) were not significant 
with p-value 0.7598 and 0.4167, respectively. Model term A and B were included in the analysis for 
keeping the model hierarchy because interaction model term AB and C2 was significant with p-value 
of 0.0060 and 0.0069 respectively.  

 
Table 3. ANOVA analysis of the quadratic model for tensile strength 

Source Sum of 
Squares Df Mean 

Square F Value p-value 
Prob > F  

Model 13224.97 9 1469.44 4.89 0.0241 Significant 
A-Arc Current 30.38 1 30.38 0.10 0.7598  
B-Arc Voltage 223.94 1 223.94 0.74 0.4167  
C-Travel Speed 2001.12 1 2001.12 6.66 0.0365  

AB 4556.25 1 4556.25 15.16 0.0060  
AC 18.69 1 18.69 0.06 0.8103  
BC 677.27 1 677.27 2.25 0.1771  
A^2 479.86 1 479.86 1.60 0.2469  
B^2 1079.09 1 1079.09 3.59 0.1000  
C^2 4284.48 1 4284.48 14.25 0.0069  

Residual 2104.35 7 300.62    
Lack of Fit 549.49 3 183.16 0.47 0.7187 not significant 
Pure Error 1554.86 4 388.71    
Cor Total 15329.32 16     

    R2 0.8627  
    Adj. R2 0.6862  
    Pred. R2 0.2680  
    Adeq. R2 8.183  

  
The accuracy of this model was also supported by the lack of fit analysis. The “Lack of Fit F-

value” was 0.47 and implied that the Lack of Fit was not significant relative to the pure error. There 
was 71.87% chance that a “Lack of Fit F-value” this large could occur due to noise. The non-
significant lack of fit was good because it made the model fit. The value coefficient of determination, 
R2 was 0.8627 hence, the value of correlation coefficient, r was 0.9288 which was higher than 0.8. A 
correlation greater than 0.8 was generally described as strong. The value of Pred. R2 of 0.2680 was not 
close to the Adj. R2 of 0.6862 as one might normally expected. This may indicate a large block effect 
or a possible problem with model and/or data. However, Adeq. Precision indicated the measured 
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signal to noise ratio was desirable, which was greater than 4. The ratio was 8.183 thus indicated an 
adequate signal and the model can be used to navigate the design space. 

There were three variables, welding current, voltage and travel speed. However, only travel speed 
was significant to the model but welding current and voltage was included in the model for keeping 
the model hierarchy. It was because the interaction between welding current, voltage and travel speed 
was significant.  

3.4.3. Significant Factors Influencing Tensile Strength 
The significant factors influencing tensile strength value were determined by using ANOVA analysis 
of the quadratic model for response – tensile strength, Table 3. Based on the p-value less than 0.05, 
travel speed (C), interaction between current and voltage (AB) and travel speed quadratic term (C2) 
were the significant influencing factors of the tensile strength. 

3.4.4. Effect of Travel Speed (C) on Tensile Strength 
Based on Table 3, travel speed p-value was 0.0365, which was less than 0.05 and was classified as one 
of the significant factors influencing tensile strength. The travel speed main factor curve in Figure 4 
shows that as the tensile strength decreased from 339.74 MPa to around 280 MPa, the travel speed 
increased from 2 RPM to 3 RPM. However, as the tensile strength increased after passing 3 RPM until 
maximum 4 RPM, with tensile strength value 308.12 MPa. Similar result was found by Talabi et al. 
[12], as they increased the travel speed, the tensile strength decreased and at certain speed and further 
increase in the travel speed, the tensile strength increased. 

Effect of travel speed showed that the increased in travel speed decreased the tensile strength value. 
Similar result was found by Ampaiboon et al. [13] whereas the maximum UTS of welded joint was 
obtained by lowest travel speed and increasing the travel speed decreased the tensile strength 
gradually. 
 

 
Figure 4. Behaviour of weldment tensile strength in response to variation of welding travel 

speed 

3.4.5. Effect of Interaction between Arc Current and Arc Voltage (AB) on Tensile Strength 
The ANOVA analysis revealed that the interaction between arc current and arc voltage (AB) is the 
most significant factor on tensile with p-value of 0.006. Figure 5 shows the interaction between arc 
current and arc voltage with respect to the weldment tensile strength. At low arc voltage, 17.0 V, the 
variation in arc current, increased the weldment tensile strength value, from 245.71 MPa to 317.11 
MPa. However, at high arc voltage, 21.5 V, variation in arc current decreased the weldment tensile 
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strength value from 323.79 MPa to 260.19 MPa. This indicated that the interaction between arc current 
and arc voltage significantly affected the weldment tensile strength value. 

The effect of arc voltage on tensile strength is the increase in arc current which lead to the increase 
in tensile strength value. Similar result was found by Ampaiboon et al. [13] which focused on the 
effect of welding parameters on ultimate tensile strength. Maximum UTS of welded joint was obtained 
by highest voltage value. It is also supported by Ragu Nathan et al. [14] that the weldment is 
comparatively stronger due to strong carbide or nitride element formation which has limited solubility 
in ferrite and austenite. 

Therefore, at low voltage, the increased in the arc current resulted in the tensile strength value to 
increase. However, at high voltage, variation in arc current significantly decreased the tensile strength 
value. Similar results were observed by Hussein et al. [15].This was because at high voltage produced 
wider, flatter and less penetration as compared to low voltage welding. As mentioned by Rohit and 
A.K. [16], the depth of penetration was at maximum for optimum arc voltage. 

 
Figure 5. Interaction between arc current and arc voltage with respect to welding tensile 

strength 

3.5. Microhardness 
The significant factors influencing hardness were also determined by using ANOVA analysis of the 
quadratic model for response – microhardness. Based on the p-value less than 0.05, arc current (A), 
interaction between current and voltage (AB), interaction between current and travel speed (AC), 
interaction between voltage and travel speed (BC), arc voltage quadratic term (B2), travel speed 
quadratic term (C2) and interaction between current and voltage quadratic term (AB2) were the 
significant influencing factors of the microhardness. As the arc current increased from 150 A to 170 A, 
microhardness of the weld decreased from 253.75 HV to 213.97 HV. Similar result was found by 
Bodude and Momohjimoh [17] as they increased the current value with constant voltage, the hardness 
decreased.  

Increased in arc voltage from 17 V to 21.5 V led to insignificant change of weldment 
microhardness from 213 HV to only 214 HV. However, the quadratic term of voltage (B2) in the 
ANOVA analysis, from Table 4, indicated that p-value less than 0.05 reflected the significance of the 
quadratic term value. The main effect graph indicated that the maximum microhardness of 238.29 HV 
was obtained at 19.25 V before it started to drop. Bodude and Momohjimoh [17] also studied the 
effect of welding voltage with constant current on microhardness value. As the voltage increased from 
100 V to 220 V at 100 A, the microhardness value decreased. An increase in travel speed from 2 RPM 
to 4 RPM led to subtle change of weldment microhardness from 220 HV to only 223 HV. However, 
the quadratic term of travel speed (C2) in the ANOVA analysis, from Table 4, indicated that p-value 
less than 0.05 reflected the significance of the quadratic term value. This was also indicated by the 
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main effect graph where the highest microhardness value, at 3 RPM was 238.29 HV before it started 
to drop. Similar result was found by Kenchireddy et al. [18] as they increased the travel speed, the 
microhardness increased and started to drop at certain speed. 
 

Table 4. ANOVA analysis of the quadratic model for response hardness 

Source 
Sum of 
Squares 

Df 
Mean 

Square 
F Value 

p-value 
Prob > F  

Model 8337.69 10 833.77 26.34 0.0004 significant 
A-Arc Current 1582.20 1 1582.20 49.98 0.0004 

 
B-Arc Voltage 2.91 1 2.91 0.09 0.7721 

 
C-Travel Speed 18.07 1 18.07 0.57 0.4785 

 
AB 759.21 1 759.21 23.98 0.0027 

 
AC 430.40 1 430.40 13.60 0.0102 

 
BC 1305.15 1 1305.15 41.23 0.0007 

 
A^2 86.56 1 86.56 2.73 0.1493 

 
B^2 2577.08 1 2577.08 81.41 0.0001 

 
C^2 1189.11 1 1189.11 37.57 0.0009 

 
AB^2 1186.97 1 1186.97 37.50 0.0009 

 
Residual 189.92 6 31.65 

   
Lack of Fit 15.07 2 7.54 0.17 0.8476 not significant 
Pure Error 174.85 4 43.71 

   
Cor Total 8527.61 16 

    
    R2 0.9777  
    Adj. R2 0.9406  
    Pred. R2 0.8973  
    Adeq. R2 15.940  

 
Interaction between arc current and arc voltage (AB) on microhardness was one of the main factors 

influencing microhardness value, with 0.0027 p-value. The interaction between arc current and arc 
voltage with respect to the weldment hardness showed that at low voltage, 17.0 V, the variation in arc 
current resulted in decreased of weldment microhardness value, from 217.82 HV to 197.93 HV. 
However, at high voltage, 21.5 V, variation in arc current significantly changed in weldment 
microhardness. It increased from 191.47 HV to 227.97 HV.  This indicated strong interaction between 
two parameters. The ANOVA analysis revealed that the interaction between arc current and travel 
speed (AC) influenced the microhardness value. The interaction between arc current and travel speed 
with respect to the weldment microhardness showed that at low travel speed, 2 RPM, the variation in 
arc current resulted in minimal changes of weldment microhardness value, from 225.07 HV to 206.04 
HV. However, at high travel speed, 4 RPM, variation in arc current significantly changed in weldment 
microhardness. It decreased from 248.82 HV to 188.30 HV. This indicated that arc current 
significantly affected the weldment microhardness with interaction of travel speed. 

4. Conclusion 
This study made a significant contribution to the field of knowledge related to TOW of dissimilar 
material of SS304 and BS1387 using GMAW as heat source. This study has found that the parameters 
used were able to produce good quality weldment on dissimilar material of SS304 and BS1387. The 
quality of the weldment was visually observed using dye penetrant method and the result shows no 
major defect on the weldment. However, there were a few flaws at start-end point on the weldment 
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due to lack of fusion. Still, the other parts of weldment had no defect and were used for specimen 
preparation. The results of RSM indicated that the welding parameters did affect the mechanical 
properties of weldment. The tensile strength increased when the arc current and arc voltage increased 
and travel speed decreased. Similarly, the microhardness values also increased when the arc current 
and arc voltage increased and travel speed decreased. 
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