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Abstract. The on-going H2020 project INFRALERT aims to increase rail and road 

infrastructure capacity in the current framework of increased transportation demand by 

developing and deploying solutions to optimise maintenance interventions planning. It includes 

two real pilots for road and railways infrastructure. INFRALERT develops an ICT platform 

(the expert-based Infrastructure Management System, eIMS) which follows a modular 

approach including several expert-based toolkits. This paper presents the methodologies and 

preliminary results of the toolkits for i) nowcasting and forecasting of asset condition, ii) alert 

generation, iii)  RAMS & LCC analysis and iv) decision support. The results of these toolkits 

in a meshed road network in Portugal under the jurisdiction of Infraestruturas de Portugal (IP) 

are presented showing the capabilities of the approaches.  

1. The INFRALERT concept to optimise transport infrastructure maintenance 
The condition of transport systems has enormous societal and economic relevance since economic 

opportunities are likely to arise where transportation infrastructures are able to answer mobility needs 

and ensure access to markets and resources [1]. Our growing economic require an enlargement of 

transport capacity, most especially for land transport. However, the economic situation and the lack of 

land prevents from enhancement of the rail and road network. On the other hand, as our networks are 

more congested, there are fewer chances to perform maintenance while the extensive use of the 

infrastructure accelerates its deterioration. In this situation, the only open door to boost land transport 

capacity is by making a better use of the existing network reducing maintenance interventions and 

extending the life of existing assets. This is the motivation of the ongoing H2020 project INFRALERT 

[2] which proves its developments in the road and railways systems.  

INFRALERT exploits the similarities of linear infrastructures and develops systems and tools for 

support Infrastructure Managers (IM) or Maintenance Contractors in maintenance interventions 

decision making. Figure 1 shows in a dashed box the INFRALERT platform and its interaction with 
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the IM/MC and the different data bases.  INFRALERT aims at the development of models and ICT 

tools to optimise the performance of existing linear land transport infrastructure. It develops an expert-

based information system to support and automate infrastructure management from measurement to 

maintenance. Figure 2 illustrates the concept and the scope of INFRALERT which has been conceived 

using a modular approach to facilitate its flexibility and applicability. It includes a data management 

system (i.e. the Data Farm) and a set of toolkits covering Data Analytics modules (asset condition, 

alert management and the RAMS & LCC) and a decision support tool which receives the results of the 

Data Analytics modules and optimise maintenance interventions. All these modules are conceived as 

plug-ins into a common shell, which is the expert-based Infrastructure Management System (eIMS), 

allowing communication among the different modules, with external data bases and the user. 

INFRALERT is conceived to be compatible with existing asset management systems.  

 

 

 

 

Figure 1. INFRALERT platform.  Figure 2. INFRALERT modular concept. 

 

The development of the INFRALERT project will be validated in two real infrastructure systems: a 

meshed road network in Portugal owned and managed by Infrastruturas de Portugal (IP) and a rail 

corridor in Sweeden owned by Trafikverket. This paper present the methodologies developed by the 

different tools in the expert based toolkit (Figure 2) and their preliminary results obtained in part of the 

road network.  

 

2. Use case: the road pilot 

The road pilot in Portugal comprises 539 km of roads in the Coimbra region under IP jurisdiction. It 

includes a rich variety of road types (principal, national, regional…). The network is classified based 

on sections of an average length of 6.6km and 87 nodes. 

IP Pavement Management System (SGPav) stores information of maintenance activities carried out 

since 2007 and road condition data such as longitudinal (IRI) and transverse unevenness (Rut Depth), 

cracked area and pavement macrotexture. IP Maintenance strategy categorises interventions in major 

or routine maintenance. Major maintenance includes relevant works in terms of cost, length and 

complexity while routine maintenance includes smaller scale and lower complexity works, such as 

pavement localised repairs or other activities such as drainage system cleaning, shoulder treatment, 

minor works performed in bridges and any urgent repairs.  

The basis of the data stored in SGPav is related to the section element (start and end node). Inside 

this database, the section table has a number of selected fields that are relevant in order to summarize 

the most important information associated with the part of the road it represents. Besides this main 

table, other relevant tables contain further information based on the field measurements and the 

pavement historical information with all the road maintenance work performed up to date.  

 

3. Expert-based tookits and test cases 

Following the Data Analytics tools (asset condition, alert management and RAMS&LCC) and 

Decision Support tool are presented together with results from the road pilot in Portugal. 
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3.1 Nowcasting and Forecasting of Asset Conditions  

The main aim of this toolkit is to develop methodologies for linear asset condition assessment and 

prediction by identifying and segregating hierarchy of conditional information for nowcasting and 

forecasting. Nowcasting focuses in what is known today while forecasting is the process of exploiting 

past and present data to make deductions about the future. For nowcasting and forecasting, the asset 

and condition data is accessed from the Data Farm as shown in Figure 3. Pre-processing methods such 

as data cleaning and dynamic segmentation is carried out on this data to obtain meaning information. 

There are different types of nowcasting and forecasting approaches available based on principle of 

physical, data-driven, and knowledge-based [3, 4]. Data-driven approaches rely on monitored and 

historical data that are used to learn the systems behaviour [5]. Regression analysis is a commonly 

applied approach for modelling of pavement deterioration. Weighted regression approach has been 

used to better capture the nonlinear behaviour of the degradation [6]. An important consideration in 

maintenance modelling of linear assets is dynamic segmentation, which allows multiple sets of 

attributes to be accompanied with any segment of a linear feature. Each time an attribute value 

changes, it can "dynamically" locate the segment. To achieve good forecasts the input to the models 

needs to be homogeneous over their respective length. An example for dividing road infrastructure 

into statistically homogenies segments is the cumulative difference approach which is described in the 

AASHTO pavement guide [7].  
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Figure 3. Asset condition toolkit flowchart. 

 

Figure 4. Forecasted output for road case. Current condition (blue solid); forecasted condition 

after 3 years (red dashed)  and associated 95 % confidence levels (dotted) 

 

For the road pilot, forecasting of the longitudinal unevenness (IRI) was performed based on the 

weighted regression model. The data originates from annual road surveys from 2012-2015 for road 

section EN101-3 D061. Input to the regression model was the IRI values that first were divided into 



4

1234567890

BESTInfra2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 236 (2017) 012105 doi:10.1088/1757-899X/236/1/012105

 

 

 

 

 

 

homogenous segments using the AASHTO approach based on the pavement quality index. The quality 

index is an aggregated indicator, which is calculated as a function of longitudinal unevenness, 

transversal unevenness, and cracking. The forecasted output after 3 years with 95% confidence 

intervals for 100 m sample segments over 5 km is shown in Figure 4. The prediction with uncertainty 

will be forward to the Alert Management system. 

3.2 Alert generation 

The aim of the Alert Management toolkit is to prioritise predicted maintenance alerts of linear 

infrastructure assets, according to the required maintenance interventions based on the forecasted 

severity of degradation and failure of the assets themselves, and the know-how brought in by the 

information recorded in the historical maintenance work-orders. Two kinds of alerts are predicted and 

involved in the proposed methodology shown in the block diagram of Figure 5. 

Module AM1 (Alerts based on limits) is responsible for generating alerts from the point of view of 

those features that overcome their associated limits or reference thresholds, using as inputs the 

forecasted values of the explanatory features of the asset. As result, the module provides the following 

outputs (Table 1): i) Alerts indicating that a specific feature exceeds its prescribed threshold and ii) 

Technical Severity Levels (TSL) of the estimated alerts. The TSL is an objective value used to 

prioritise the alerts according, for instance, to a distance criterion between the value of the feature and 

the threshold. 

Module AM2 (Alerts based on Work Orders) predicts alerts from the point of view of whether 

maintenance is or is not required (Yes-No); it also estimates the most probable maintenance 

interventions to be conducted. To achieve this, the module embodies two different functional 

submodules. The first one (AM21) is specifically devoted to triggering alerts regarding the need of 

maintenance and their corresponding level of global technical severity (GTSL) in terms of all 

forecasted features considered as a whole. Here, the alerts are triggered by the estimator contained in 

the first block (Alert Estimator) which has been previously trained with the explanatory features (e.g. 

measurements) and the historical maintenance interventions through a machine learning processing. 

Submodule AM21 also provides an optional output using a second block (Asset Condition Classifier), 

which “learns” from the Maintenance Manager (MM) know-how, with the final purpose of predicting 

a subjective evaluation of the asset condition (from the set of forecasted features) without the 

intervention of the MM. 

 

Table 1. Results from AM1 module. 

ID CT IRI RUT 

W 

CTL1 

TSL 

CT1 

W 

CTL2 

TSL 

CT2 

W 

IRI 

TSL 

IRI 

W 

RUT 

TSL 

RUT 

225 36 2.25 4.85 YES 45.76 YES 4.12 No 0.00 No 0.00 

243 4 1.75 2.71 No 0.00 No 0.00 No 0.00 No 0.00 

            

The second submodule (AM22) aims at determining the set of k-most probable maintenance 

interventions that have to be conducted, as well as their corresponding probabilities of occurrence, via 

a learning procedure based on historical intervention database. As result, the module provides: i) alert 

triggered: required maintenance; ii) Global Technical Severity Level (GTSL) for the asset; iii) K-Most 

probable interventions; and iv) probabilities of occurrence of the most probable interventions. 

The data used to develop the toolkit are the IRI, Rut and CT corresponding to a set of previous 

measurement campaigns, from which the empirical statistics were inferred to generate a larger data 

set. In order to check the accuracy of the different machine learning predicting models used, the last 

campaign (2014) is chosen as a testing sample, keeping this year out of the training set. Selecting the 

Decision Tree model (DT) as an example, the results are shown in Figure 6. The upper panel of Figure 

6 shows the performance evaluation of the DT model. This evaluation was made by using a confusion 

matrix, based on counting those test records correctly and incorrectly predicted. This matrix shows the 
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real and the predicted maintenance based on the list of maintenance activities of Table 2. Class T0 is 

associated to no-alert, and T1 to alert without maintenance required (warning). The lower panel of 

Figure 6 shows a comparison between the real maintenance carried out and the predicted ones. 

According to this, results are reliable and the errors are mainly between T4 and T3.1, as suggested by 

the confusion matrix. This figure represents the most probable maintenance intervention; however, the 

models offer several possibilities with a score for each one. 

 

 

 

 

Figure 5. Work-flow diagram of the toolkit.  Figure 6. Result example (DT model). 
 

3.3 RAMS and LCC analysis 

The aim of this toolkit is to perform real-time RAMS&LCC analysis to assess the Reliability, 

Maintainability, Availability and Safety (RAMS), and the Life-Cycle Cost (LCC) of the infrastructure. 

RAMS & LCC provides probabilistic information to be considered for decision support.  

The application of RAMS analysis [8] in civil engineering, although relatively recent, has a high 

potential to predict the number and distribution of failures in infrastructures, which in turns provides 

an estimation of the availability. RAMS enfolds a rich set of parameters [9] and distribution functions 

characterizing the reliability and maintenance need of the infrastructure. RAMS parameters are 

provide relevant probabilistic information for the maintenance planning.  

LCC analysis takes into account all the costs associated with the lifetime of the system. For 

complex systems, such as railway and road infrastructures, the cost of maintenance plays a very 

important role because operation and maintenance comprise a major share of the system’s life-cycle 

Table 2. Types of maintenance used for alert generation and RAMS/LCC. 

M Alert Description M Alert Description 

T0 No No request T3.1 Yes Profile milling and fill 

T1 Yes Do nothing T4 Yes Regulating course 

T2 Yes Surface treatment PC Yes Full-depth patching (corrective) 

T3 Yes Thin asphalt surfacing PP Yes Crack fill (preventive) 
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and they are the most sensitive to cost uncertainties. These uncertainties are associated to internal 

risks, which can be quantified through RAMS parameters. 

One of the innovations of the INFRALERT’s RAMS&LCC toolkit is to make use of the previously 

calculated RAMS in the assessment of maintenance costs. The integration of stochastic RAMS in the 

LCC analysis allows obtaining reliable predictions of system maintenance costs and the dependencies 

of these costs with specific cost drivers through sensitivity analyses. Moreover, using the computed 

RAMS probability distributions, the associated uncertainties are integrated into the LCC 

determination. The output provided by these stochastic LCC are finally used for long-term planning in 

the decision support tool. Figure 7 depicts the general workflow of the RAMS&LCC process. 

 

 

 

 

Figure 7. Overview of RAMS&LCC methodology.  Figure 8. MTTFs by failure mode. 

 

For the road pilot in INFRALERT, different models for RAMS have been applied depending on the 

characteristics of the road section under study. For sections with a large number of the same 

intervention, the reliability function is modelled using a Non-Homogeneous Poison Process (NHPP) 

[10]. Information about Mean Time Between Failures (MTBF) or the degradation trends through the 

rate of failures [11] can be calculated. However, when studying the road use case there are few 

sections that allow this kind of study, which forces to apply a time-to-event modelling to obtain Mean 

Time To First Failure (MTTF). This paper shows the results of the road sections with scarcity of 

accumulated data. 

The upper panel of Figure 8 shows the event plot for the first maintenance interventions performed 

after January 2007 in the whole road network. Different road sections are displayed in the y-axis, 

while the x-axis represents the temporal scale from 2007 to 2015. In this figure only time-to-first-event 

has been plotted. The different colours correspond to the types of maintenance described in Table 2. 

Weibull distributions are used to model the reliability function for each type of maintenance. From the 

reliability, it is possible to estimate the probability of these interventions happening in a given time 

slot, which furthermore can be used for the optimization of tactical planning in the decision support 

tool. The calculated MTTF with confidence intervals for the different maintenance tasks is shown in 

the lower panel of Figure 8. 

From individual maintenance costs and the calculated mean times, the overall costs per type of 

maintenance can be calculated using the LCC model. The probability distribution function of MTTFs 
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allows studying the level of uncertainty in the LCC model, which is fed to decision support tool for 

long-term planning. This simulation is currently under development in INFRALERT.  

3.4 Decision support tool 

The final objective of the INFRALERT system is to provide Infrastructure Managers/Owners and 

Maintenance Operators/Contractors with intelligent software tools to support the decision-making 

process when planning maintenance activities and interventions. This section presents the application 

of INFRALERT for tactical planning (or mid-term planning) in the road pilot in Portugal (IP owned).  

On tactical planning level, IP maintenance department has to allocate major interventions over a 5-

year time horizon. The interventions are aggregated as single events over the 500 m-segments of 

certain road sections in order to avoid multiple traffic interruptions on the same section. The allocation 

of such intervention events is done on a monthly basis. In detail, the decisions to create a tactical plan 

include: i) the allocation of a starting month for intervention events (within the next 5 years) and ii) the 

selection of a minimum level of intervention (corresponding to maintenance types T1, T2, T3, T3.1 

and T4 in Table 2) on a section. This selected minimum level determines which segments of the 

respective section actually have to be maintained, which are the ones whose state (at some point 

during the considered time period) would cause an alert with an intervention level equal or higher than 

the selected minimum.  

The decision-maker has to consider certain restrictions like: i) minimum quality level for road 

segments, ii) usage of a given yearly budget for interventions; iii) maximum overall 5-year budget,  iv) 

capacity of supervisory staff (which means that interventions can be allocated to a restricted number of 

sections per region only), v) only one intervention event per year is allowed in each section. 

The tactical planning has to optimise three items in the objective function (which are balanced by 

weighting factors): i) minimize maintenance interventions costs; ii) maximize quality index (which is 

a function of the predicted conditions of road segments and predicted failure events coming from 

RAMS analysis) and iii) maximize availability of the network (which depends on the capacity 

reduction of sections due to interventions). Maintenance interventions costs are derived from LCC 

analysis and provided by the toolkit on RAMS & LCC. 

The allocation and selection of interventions in the tactical plan is based on the maintenance alerts 

generated by the Alert Management toolkit, which is based on predicted future conditions coming 

from the Asset Condition toolkit. Thus, input for tactical planning are no concrete work orders to be 

scheduled but predicted work orders provided with the corresponding probabilities of occurrence. Due 

to this uncertainty of the real amount of work to be done the ending time of intervention events at each 

section will only be known at execution time. Furthermore, the working time needed for interventions 

cannot be seen as a fixed, deterministic duration, but has to be modelled as a stochastic variable in the 

model. In particular, the probabilistic information provided by the RAMS analysis toolkit calculations 

will be used as input in relation to the interventions duration. 

These characteristics make the tactical planning a stochastic optimization problem which calls for 

specific modelling and solution techniques to be applied. A mathematical optimisation model which 

reflects the uncertainty in the problem description has been developed as foundation for the decision 

support tool. The handling of such uncertain information in the decision support tool is done using a 

scenario approach. A set of future scenarios is simulated as follows: 

 

• For each of the condition parameters characterising the road quality (features), a time series of 

possible values is predicted, using the Asset Condition toolkits for forecasting. 

• Based on these predicted conditions the respective intervention alerts are generated by the 

Alert Management toolkit. 

• Additionally, based on RAMS analysis possible failure events are generated, using e.g. results 

from MTTF, MTBF calculations.  
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The resulting scenarios represent possible "states of the world" and are used in the optimisation 

algorithms of the decision support tool to derive decisions, but also to calculate the objective function 

and restrictions for a selected tactical plan.  

 

4. Conclusions 
This paper presents the modular concept of the INFRALERT eIMS for optimizing maintenance 

interventions in railways and road infrastructures together with the methodologies and preliminary 

results validated in a meshed road network in Portugal of some of its modules (the items in the expert-

based toolkit, Figure 2). In particular, the following methodologies have been explained including the 

corresponding test results on the road pilot: i) The methodology for nowcasting and forecasting of 

asset condition which is an input for the following item; ii) the methodology to support and automate 

the prediction of maintenance intervention alerts (which combines the current and predicted asset 

condition with operational and historical maintenance data to get information about the needed 

maintenance tasks) by means of data analytics and machine learning models, which provides 

forecasted alerts and maintenance alerts to be consider in the maintenance planning; and iii) the 

methodology to compute probabilistic RAMS parameters which provide relevant information for the 

maintenance planning. In addition, the following methodologies have been introduced although no test 

results have been shown: i) the approach to introduce the probabilistic RAMS information for 

computing of the probabilistic LCC which is a relevant piece of information for the decision support 

and ii) the formulation and the methodology to solve the tactical planning (mid-term which means up 

to 5 years in a monthly basis for the road pilot) optimization problem which receives the predictions 

and computations from the alert management and the RAMS & LCC systems. 
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