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Abstract. The paper considers the procedure of constructing curves of dynamic equilibrium 

and problems of applicability of the procedure of linearization of lubricant film reactions 

around the equilibrium point for conical fluid-film bearings. 

1. Introduction 

An important role in the study of rotor-bearing units is played by the assumption that it is possible to 

linearize, generally speaking, essentially nonlinear reactions of the lubricating layer of a fluid-film 

bearing in the area of a certain equilibrium position. By the position of equilibrium in this case the 

position of the center of the journal’s center is meant, where the external load is completely 

compensated by the reactions of the lubricating layer, and the set of such points at different rotational 

speeds of the rotor constitute a spatial curve called the dynamic equilibrium curve. These curves for 

the case of cylindrical supports constitute a function   in the domain of determining the permissible 

rotational speeds   in the plane of the radial cross-section. Such functions are constructed for a given 

radial load vector F . Equality means ( ) ( , )X Y   that there is equality ( , )R X Y F  at the point 

( , )X Y , where R is the reaction force of the bearing. 

Studies of cylindrical full-coverage and thrust bearings confirm that if there is an asymptotic 

convergence of the trajectory of the motion of the rotor, then it converges to a point on the dynamic 

equilibrium curve. In the case when the trajectory of motion has the form of a limit cycle, its 

geometric center is close to the point of dynamic equilibrium. This gives a formal basis for the 

linearization of the lubricant layer reactions at these points. 

The aim of this paper is to investigate the feasibility of using this method for the case of conical 

fluid-film bearings. A distinctive feature of this problem is that the dynamic equilibrium curve (if it 

exists) lies in three-dimensional space, can have discontinuities and other features that are not 

characteristic of either cylindrical or thrust bearings. At the same time, the solution of this problem is 

necessary to determine the degree of conformity of the description of the dynamic characteristics of a 

conical bearing by calculating the stiffness and damping coefficients. 
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2. Mathematical model of a ‘rotor-conical bearing’ system 

 

 

Figure 1. Calculation diagram of a conical fluid-film bearing. 

 

To study the above issues, the mathematical model of the laminar flow of a thin layer of a viscous 

lubricant in the form of a two-dimensional Reynolds equation [1-3] will be used, which has the 

following form: 
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Here , ntV V - tangential and normal components of the projection of the velocity ( )V   of the lubricant 

on the bearing surface; ,x zV u V v   ,x zV u V v   (fig. 1), zV  - speed of the lubricant in the axial 

direction, X , Y  and Z  - speed of the center of the journal,   - angular speed, rad/s, h  - radial gap 

function,   - the angle of rotation corresponding to the motion along the axis OX along the 

supporting surface of the bearing, 
2 x

R


  . 

In the framework of this paper, isothermal formulation of the problem is taken, assuming, therefore, 

that the viscosity and density are constant throughout the lubricating layer. 

The calculated area in this case is a "supporting surface", topologically equivalent to the surface of the 

truncated cone. Equation (1) in this case is conveniently written in polar coordinates, taking as the pole 

the point of convergence of a given cone [2]: 
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The boundary conditions to equation (2) are the pressure values lp  and rp , set on the boundaries 

and taken as equal to 1 bar within this study. 

Determination of the gap function for the general case, which allows the rotation of the local 

coordinate reference frame of the rotor relative to the fixed bearing’s frame, is given in [3]. In the 

present case of the problem, a simpler formulation of the problem will be considered in which only 

one conical fluid-film bearing is present, and the coordinate system associated with the rotor can be 

obtained from the coordinate system associated with the bearing only by the parallel transfer 

operation. This allows one to write the gap function in a simpler and more convenient form using the 

expression for the cylindrical bearing clearance function defined by three parameters: the radius of the 

bearing, the radius of the journal and the displacement vector of its geometric center in the radial 

plane: 
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Here 
bR  and 

rR  - radiuses of the bearing and the rotor accordingly, L  - length of the bearing. In 

practical constructions, the parameters    and z  that determine the coordinates of a point on a 

reference supporting surface are considered free, and all others are considered connected. 

One of the characteristics of a fluid-film bearing is the reaction force vector of the lubricating layer, 

the components of which can be obtained by integrating the projections of the vector ·p n  along the 

surface, where p - pressure, n - the internal normal to the surface of the bearing: 
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For the numerical integration of equation (1), the method of finite differences is used with an 

adaptive grid, described in [4]. This scheme does not imply the uniformity of the grid along the 

coordinate lines and has the 
2( )o h  order of accuracy, where h - the average step of the grid. A typical 

pressure distribution in a fluid-film conical bearing in the steady-state motion is shown in the Figure 2 

 
 

(а)                                                           (b) 

Figure 2. To the solution of (2): (a) adaptive calculation grid; ( b) 

pressure distribution on a conical bearing. 

3. Dynamic equilibrium curves formation 
Using the presented mathematical model, the question of determination of points of a dynamic 

equilibrium curve could be addressed, given the geometric parameters of the bearing, thermophysical 

properties of the lubricant and the given external force [2]. It is easy to show, that if for some  such 

point exists, then it is the only one. To do this, it suffices to note that the norm of the bearing’s 

reaction force vector is a monotonically increasing eccentricity function, that is, the amount of 

displacement of the rotor relative to its central position. Then, because of the symmetry of the bearing, 

the vector equation ( , )R X Y F   can be divided into two equations: 
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where ( )A  is the matrix of the left-hand rotation by the angle , ·,·   is the Euclidean scalar 

multiplication. Obviously, these equations can be solved in this order, that is, first to find the reaction 

force vector with a predetermined displacement direction averaged to the given load, and then 

determine the angle to which the given vector should be rotated in order to completely balance the 

applied force. Because of the monotonicity of the reaction, simple one-dimensional optimization 

methods can be used to solve the first equation, in particular, the half-division method.  

For the case of a laminar isothermal flow of the lubricant in the bearing, it can also be shown that 

there is a single curve of dynamic equilibrium, determined to within an arbitrary factor in terms of 
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accuracy having the dimension of dynamic viscosity. Indeed, for the case of constant viscosity, one 

can make a 0p p   substitution of variables and solve the Reynolds equation (1) in the form: 
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So, for a laminar isothermal flow, the shape of the dynamic equilibrium curves is determined only 

by the gap function and, therefore, is a only geometric characteristic of the bearing. 

For the case of a conical bearing, it becomes necessary to consider a three-dimensional reaction 

vector, which makes it impossible to directly use the above-described decomposition technique. One 

can, however, get rid of this difficulty, if one observes that for each permissible axial displacement of 

the rotor there is a corresponding curve of mobile equilibrium in the cutting plane for a given 

projection of the external counterbalanced force F on it. So, for conical bearings, it is possible to 

define a surface that can reasonably be called a dynamic equilibrium surface, such that all radial 

curves of dynamic equilibrium for all permissible axial displacements of the rotor lie on it. On this 

surface, it is possible to determine the field of forces directed in the axial direction and which are the 

projection of reaction forces at the corresponding "equilibrium" points of reaction forces to the axis of 

the bearing. In this case, the problem of finding equilibrium points for a conical bearing can also be 

decomposed into the following steps: 

1) form the surface of dynamic equilibrium  ; 

2) solve the equation ( , , )R X Y Z F   with limitation ( , , )X Y Z  . 

It is clear that every equilibrium point lies on the surface of mobile equilibrium. We note, however, 

that already at the stage of setting the problem, it becomes clear that it is impossible to speak in the 

general case of any continuous three-dimensional mobile equilibrium curve for a conical bearing. 

Moreover, the computational experiments carried out show that, in general, there is no reason for a 

conical bearing to assume the presence of at least one point in which both the radial and axial 

components of the applied force can be simultaneously balanced. A typical example of a mobile 

equilibrium surface and its corresponding field of axial reactions are shown in Figures 3-6. 

 
 

Figure 3. Surfaces of the dynamic equilibrium of the conical 

bearing; Lubricant: Water. 

 

 



6

1234567890

(HERVICON+PUMPS-2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 233 (2017) 012041 doi:10.1088/1757-899X/233/1/012041

 

Figure 4. Surfaces of the dynamic equilibrium of the conical 

bearing; Lubricant: Oil TP-22. 

 
(а)                                                            (b)  

Figure 5. The curves of dynamic equilibrium in the absence of 

axial displacement: (а) water; (b) turbine oil ТP-22. 

   

(а)                                                           (b) 

Figure 6. Distributions of axial reactions forces of a conical 

bearing: (а) water; (b) turbine oil ТP-22. 

The figure shows that the field of axial reaction forces is practically uniform. From this the 

following conclusion could be drawn: The conical bearing, by its design at a given speed of rotation 

 , is able to stably balance only a certain set of external forces, for which ZF lies in some sufficiently 

close proximity ( , , ,0)X YF F  . 

First, for a conical bearing, to a lesser extent than for the rest, a procedure for linearizing the 

reaction in the area of a certain point is suitable, and a description of the effect of the lubricating layer 

on the rotor through the stiffness and damping coefficients. Secondly, a small dispersion of the axial 

component of the reaction of the lubricating layer at points lying on the surface of mobile equilibrium 
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indicates that the application of a constant axial force in the general case must lead either to a 

displacement of the rotor in the direction of increasing gap and loss of bearing’s load capacity or to the 

contact of the surfaces of the rotor-bearing unit due to the inability to compensate the applied axial 

load. The study of these questions and the determination of parameters that ensure the operability and 

stability of the motion of the rotor in conical supports require the solution of the dynamic problem. 
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