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Abstract. Relatively little information is available in the literature with respect to the 

performance of compressors used during the dynamic charging process of a tank. Therefore, 

work presented in this paper shows the measurement results of performance testing of a 

natural gas compressor and analyses the compressor characterization based on the 

experimental data. Initial tests were conducted using air and carbon dioxide given the 

thermodynamic similarities between these fluids and natural gas. Finally, a new test stand was 

specifically designed and built for compressor dynamic testing using pipeline natural gas (NG) 

and the compressor reliability has been evaluated inside an explosion-proof engine test cell. 

Reliability tests at standard operating conditions monitored the performance consistency of the 

compressors over the testing period and the testing consisted of a series of tank charges aimed 

at evaluating the maximum operating temperature as well as the mass flow rate in the system. 

1. Introduction 

Limited studies have been conducted with respect to experiments and simulation models to 

monitor and predict the dynamic process of reciprocating compressor. The dynamic testing of a 

two-stage reciprocating air compressor with inter- and after-cooling during steady and transient state 

operation has been reported by Nakagawa et al. [1]. The application of micro-thermocouples for 

measuring the instant temperatures and pressures in cylinders was mainly discussed. A specific 

dynamic model for a small refrigerating cycle was presented by Janssen et al. [2]. Experiments and 

simulations for the start-up and pull-down phase of a freezer were reported as well. However, in these 

papers, the working fluids were conventional refrigerants or ambient air, and the experimental 

considerations were not comparable to the dynamic testing with natural gas, which has more safety 

regulations. Kim and Lee [3] conducted several dynamic tests to verify the reliability of high cycle 

fatigue of a gas compressor blade, and analyzed the fatigue testing results. Norman Shade [4] 

presented several cases of existing reciprocating compression assets and especially showed 

optimization of the testing rigs using pipeline natural gas. Moreover, many simulation models have 

been developed and analyzed. Chi and Didion [5] as well as Rajendran and Pate [6] both came up 

with transient simulation models for a heat pump and vapor compression cycle, respectively, but the 

experimental validations were not discussed in these two papers. Considering the combustible 

property of natural gas and safety aspects necessary, little work has been found in the open literature 

relative to the experimental testing of the dynamic charging process with natural gas. This paper 

focuses on reporting experimental data to evaluate the dynamic performance of a natural gas 

compressor during the charging process of a tank. In addition, reliability tests of the compressor 

system are also discussed. 
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2. Description of systems 

2.1 Overview of all testing systems 

To evaluate the efficiency, performance, and safety characteristics of natural gas compressors used 

in residential and commercial applications, a three-step sequence of testing was conducted and three 

test stands were built or modified for experimental performance testing of a two-stage reciprocating 

compressor system. The compressor performance tests were conducted using a combination of open 

loop and closed loop test setups with different working fluids that have thermodynamic similarities 

with natural gas. Initial open loop tests were conducted using air as a working fluid, because air is 

readily available, nontoxic, and nonflammable and carbon dioxide was chosen as the working fluid 

for the closed loop system, because the ratio of specific heat is very similar to that of natural gas. The 

open loop system was used to investigate the dynamic compressor performance when the discharge 

pressure increases due to pressurizing ambient air into a tank. The closed loop system was used to 

evaluate the compressor performance at specific discharge pressures that the compressor encountered 

during steady-state operation using carbon dioxide as the working fluid. Fig. 1 shows two test stands 

for the first two stages of testing: the left side shows the open loop test stand and the right side shows 

the closed loop hot-gas load stand. Detailed experimental results obtained with both test stands have 

been discussed in Xinye et al. [7] and [8]. 

 

 

Figure 1. Open loop and closed loop system test stand setups 

In the next step, a new test stand was specifically designed based on the experiences gained during 

the first two stages of testing and was built for compressor dynamic testing using pipeline natural gas 

(NG). In addition, the compressor reliability has been evaluated in this stage of testing. Furthermore, 

some improvements were made to the final design of the NG compressor box for safety purposes and 

better performance based on the test results from the first two test stands. 

During all tests, the following compressor measurements were recorded: compressor mass flow 

rate, suction and discharge temperatures, suction and discharge pressures, intermediate pressure and 

temperature, and compressor power consumption. Using these measurements, the compressor 

performance was evaluated. An overview of the completed tests is shown in Table 1. 

 

2.2 Natural gas testing system 

The schematic of the natural gas test stand is shown in Fig. 2. All tests with natural gas were 

conducted inside an explosion-proof engine test cell. The test stand was designed to withstand 

pressures of up to 14 MPa by using stainless steel piping. A strainer, filled with desiccant, is used at 
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the inlet of the test stand and installed before the compressor to collect moisture and dust 

contamination inside the pipeline natural gas. Three solenoid valves, located in the NG supply line 

(SV100), the suction line (SV01) and the discharge line (SV02), respectively, are controlled from the 

control room remotely for safety purpose. One manual ball valve is located after the strainer to shut 

off the natural gas flowing into the compressor. A check valve is also used to prevent any natural gas 

backflow from the pressurized tank. Furthermore, a mass flow meter is installed to measure the mass 

flow rate of natural gas after the compressor. At the end of the test stand, two pressure vessels, 

equipped with one pressure gauge, one pressure relief valve, one manual valve and one flexible hose, 

are connected to the test stand by two three-way valves. 

 

Table 1.  Overview of the full completed tests 
 

Test Type System 
Working 

Fluid 

Number of 

Tests 
Comments 

Dynamic charging 
Open loop Air 

10 
New test stand was built 

Steady-state 5 

Steady-state Closed loop CO2 5 Hot-gas load stand was modified 

Dynamic charging NG test system Natural gas 300 New test stand was built 

 

 
 

Figure 2. Schematic of the natural gas system 

 

With this configuration of three-way valves, two methods were used during the natural gas testing: 

pipeline charging and tank-to-tank charging. Using the pipeline charging method, natural gas passes 

through TWV01 to either of two tanks when TWV02 is closed. Pipeline natural gas is used to charge 

the empty tank until the target pressure was reached. In this case, MV101 is closed and TWV01is 

opened to fill the target tank (Tank01 or Tank02). The tank-to-tank charging method was utilized to 

charge an empty Tank02 from a full Tank01 or vice versa. In this case, the pressurized gas passes 

through two flow regulators, FR01 and FR02, to throttle the compressed natural gas to the 

compressor suction pressure. The benefit of this approach is to significantly expedite the testing time, 

as there is no need to empty the natural gas after two tests as is the case with pipeline charging. 
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A photo of the natural gas test stand located in the explosion-proof engine test cell is shown in Fig. 

3. A flammable gas detector is installed close to the ceiling and the power would be shut off once a 

gas leak is detected. All tests were conducted by the operator in the control room, shown in Fig. 5, 

from where the solenoid valves and compressor box were controlled by a remote-control panel. All 

measured data was obtained and displayed using an appropriate data acquisition system. An 

emergency stop was used to shut down the entire system in case of any unexpected issues. 

To dispose of the compressed natural gas, a natural gas heater setup, consisting of two flow 

regulators and a patio-comfort heater, was used to burn the compressed natural gas. The movable tank 

as well as the heater setup were moved outside of the engine cell and connected to the heater setup to 

complete the natural gas burning process. A photo of the heater setup can be seen in Fig. 4. 

 

 
 

Figure 3. Natural gas system test stand 

setup (engine cell) 

 
 

Figure 4. Natural gas system heater setup 

 

 

An NG compressor box, as shown in Fig. 6, consisting of a two-stage reciprocating compressor to 

achieve the system target pressure in the storage tank, was connected to the test stand. An electronic 

box is installed inside the compressor box, which contains an ON/OFF switch, status indicator lights, 

and a remote-control button. Another flammable gas detector with a lower gas concentration setting, 

then the test cell, was installed inside the compressor box to shut-off the compressor in case of gas 

leaks. Built-in thermal protection has been included in the compressor control program to set the 

limits of compressor shell temperature as well as gas discharge temperature. 

 

 
 

Figure 5. Natural gas system test stand 

setup (control room) 

 
 

Figure 6. Natural gas compact compressor 

box 
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A schematic of the compressor box is shown in Fig. 7. The compressor is fitted with an oil 

management system, cooling fans, and an electronic control system. In addition, the compressor box 

includes both pressure switches and a pressure relief valve to ensure that a safe operating pressure is 

maintained. The target tank charging pressure of the compressor is 4500 kPa. When the compressor 

discharge pressure reaches 4500 kPa, the compressor electronics automatically shut down the 

compressor. The compressor is fitted with numerus thermocouples and pressure transducers to collect 

operational and reliability data.  

 

 

Figure 7. Schematic of the compressor box 

 

 

2.3 Test stand instrumentation 

All measuring instrumentation is indicated in the schematics shown in Fig. 2 and Fig. 7. All 

temperatures are measured with T-type thermocouples with ±0.25◦C accuracy. The inlet pressure is 

measured with an absolute pressure sensor having an accuracy of ±0.25% of the reading. Other 

pressures are measured with gauge pressure sensors having an accuracy of ±0.13% of full scale. A 

micro-motion mass flow meter with accuracy of ±0.1% of the reading is installed after the 

compressor box to measure the gas mass flow rate. The electrical power consumption of the 

compressor box is measured with power meters that have an accuracy of ±0.04%. A data acquisition 

system is used to convert the incoming voltages from the measuring instrumentation to digital signals 

and then to transfer the signals to a personal computer. The computer uses a proper data reduction 

program for further data analysis. 

 

2.4 Test matrix 

A test matrix outlining the operating conditions for the natural gas system testing is shown in 

Table 2. The natural gas compressor testing consisted of a series of tank charges aimed   at evaluating 

compressor performance and reliability. The following compressor measurements were recorded for 

each single dynamic test: compressor mass flow rate, temperature and pressure of all significant 

points and power consumption. 

 

Table 2.  Test matrix of natural gas system tests 

Suction Pressure  Target Pressure 
Method 

Number of Tests 
Recorded Data 

[kPa] [kPa] [-] 

105 4500 Pipeline charging 20 Temperature, pressure, 

power, mass flow rate 105 4500 Tank to tank 280 

 

3. Experimental results 

3.1 Experimental results 

A dynamic test with 4500 kPa target pressure was conducted using the tank-to-tank charging 

method. Fig. 8 shows the variation of natural gas pressures as a function of time for test No.1, which 

means the first test in the sequence of test during the day. 
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Due to the nature of the charging process, it can be noticed that the intermediate pressure, PT405, 

shows gradual rise during the start-up phase. This rate of pressure increase becomes smaller after the 

system has been running for 3 minutes. The discharge pressure of the compressor box, PT407, 

increases significantly until it reaches the target pressure. Also, it is found that the intermediate 

pressure has a marked increase to an equilibrium pressure at compressor shutdown, which is due to 

the backflow through the second compressor stage. 

By contrast, Fig. 9 shows the variation of natural gas pressures as a function of time for test No.10 

which is the 10th test on the same day. It is observed that there have been distinct differences of 

pressure variation between test No.1 and No.10 during the start-up phase. Unlike the first test, it only 

takes approximately 1 minute in test No.10 for the rate of intermedate pressure (PT405) rise to stablize. 

The shape of the discharge pressure (PT408) curve remains markedly similar from test No.1 to No. 10. 

 

Figure 8. Pressure inside the compressor box (test No.1) 

 

Figure 9. Pressure inside the compressor box (test No.10) 
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Fig. 10 shows the variation of natural gas temperatures as a function of time for test No.1. After the 

compressor system starts, it is found that the first-stage discharge temperature shows notable rise at 

the beginning. The second-stage discharge temperature (TC406) has a delay, through the compressor 

start-up phase, before the temperature increases significantly until it reaches to a final value of 90◦C. 

Another obvious conclusion that can be drawn from Fig. 10 is that the each stage discharge 

temperatures show large jumps when the stage contribute to the system pressure rise. However, the 

rate at which the temperature of the second-stage gas temperature rises is larger than the rate at which 

the first-stage temperature rises. In addition, the second-stage temperature exceeds the first-stage 

temperature after the system is running for approximately 7 minutes. During this test, the maximum 

attainable temperature for the second stage is up to 90◦C and for the first stage is 70◦C. Also, it can be 

noticed that the temperature variations after the heat exchanger in both stages are relatively small, 

which are close to the ambient temperature during the entire testing. In addition, a small jump of the 

second-stage discharge temperature and oil return temperature can be seen in the right corner, which 

is due to the cooling fans being shut off with heat remaining in the compressor system after 

shut-down. 

 

Figure 10. Temperature inside the compressor box (test No.1) 

 

Similarly, a comparison of the system temperature is made between two tests on the same testing 

date. Fig. 11 shows the variation of the natural gas temperatures as a function of time for test No.10. A 

major difference between the No.1 and No.10 tests is the hike of the second-stage discharge 

temperature during the start-up phase, which jumps to 80◦C immediately. There is only a very short 

time lag for the second-stage temperature rise, unlike 7 minutes in test No.1. Also, the rate at which 

the discharge temperature of the first stage rises is smaller than the previous test after 5 minutes of 

testing, the temperature increasing only from 88◦C to 91◦C. In addition, as shown in Fig. 11, the 

maximum attainable temperature of the second-stage is approximately up to 105◦C, only 15◦C higher 

compared with the temperature in test No.1. Moreover, except for the two discharge temperatures, all 

other system temperatures only show minor changes during the entire testing, in contrast to the 

gradual increase in test No.1. Furthermore, the variance is within 3◦C, regardless of the ambient 

temperature change. 
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Figure 11.  Temperature inside the compressor box (test No.10) 

 

3.2 Reliability results analysis 

Fig. 12 and Fig. 13 show that the variation of the measured compressed natural gas pressure and 

temperature is small in multiple dynamic charging tests with identical target pressure. This is 

significant given that there is only a two to five minutes pause between tests. The identical target 

pressure was set to 4500 kPa and suction pressure was kept stable at 105 kPa. The running time for 

each test is approximately 25 minutes. It can be seen that the variation of the measured compressed 

natural gas temperature in these continuous tests increases along with the testing time but the cooling 

fans worked efficiently to cool down the system. The maximum attainable temperature of the system 

was found to be 105◦C, which is reached within six tests in series. Also, it is noted that the maximum 

temperature no longer increase after the third test in the continuous tests series when the system is 

under a periodic cycling. 

 

 
Figure 12. Variation of pressure in continuous dynamic charging test 
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Figure 13. Variation of temperature in continuous dynamic charging test 

 

In summary, 300 natural gas dynamic charging tests have been completed to evaluate the 

performance and safety characteristic of the compressor system. The differences between different 

continuous tests have been noticed and analyzed, which is instructive for the performance 

improvement and system design. The reliability analysis shows that the compressor system is robust 

and meets the discharge pressure and temperature design goals. Furthermore, the maximum operating 

temperatures are within allowable ranges and no thermal protection issues showed up. The operation 

of the NG compressor system was proven to be reliable and predictable. 

4. Conclusions and future work 

The paper demonstrates the measurement results of performance testing of a natural gas 

compressor and the compressor characterization are analyzed based on the experimental data. 

Following the previous two stages of testing, a new test stand was specially designed and built for 

compressor dynamic testing using pipeline natural gas (NG) and the compressor reliability has been 

evaluated. The results obtained from different tests appear to be plausible and significant to show the 

different performance of the compressor during a dynamic charging process. The development of the 

simulation model has recently been completed and the compressor dynamic performance will next be 

predicted and evaluated. Future development for this dynamic model will provide an accurate 

prediction of the intermediate pressure and the total charging time.  Also, the mass flow rate and 

compressor characteristic will be calculated and validated by the experimental data in future work. 
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