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Abstract: The approximation of aerodynamic performance of a centrifugal compressor stage 
and vaneless diffuser by neural networks is presented. Advantages, difficulties and specific 
features of the method are described.  An example of a neural network and its structure is 
shown. The performances in terms of efficiency, pressure ratio and work coefficient of 39 
model stages within the range of flow coefficient from 0.01 to 0.08 were modeled with mean 
squared error 1.5 %. In addition, the loss and friction coefficients of vaneless diffusers of 
relative widths 0.014-0.10 are modeled with mean squared error 2.45 %.  

 
 
Nomenclature 
1b    inlet relative blade height 

2b    outlet relative blade height 

3b    VLD relative width an inlet 
4b     VLD relative width an outlet  
5b    inlet relative vane height 

6b    outlet relative vane height 

0D    impeller inlet relative diameter 
'0

D   outlet of stage relative diameter 

/1
D   impeller blade cascade relative inlet diameter 

2D    impeller diameter  

3D    non-dimensional diameter in an inlet VLD 

4D    VLD outlet relative diameter 

5D   return channel vane cascade relative inlet diameter   

6D    return channel vane cascade relative outlet diameter   

hD    hub ratio 

sealD    seal relative diameter 
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М    Mach number 
3R    crossover relative external radius 

4R    crossover relative internal radius 

s1R    shroud relative curvature radius 

s2R    non-dimensional edge radius cover impeller disk 
F   flow coefficient 
impz    number of impeller blades 

r chz    number of return channel blades 

2a   flow angle an inlet 
1blb    inlet blade angle 
2blb    outlet blade angle 

5blb    return channel vane inlet angle    

bld    relative impeller blade thickness 

r chd   relative vane thickness 
h    polytropic efficiency 
l    friction coefficient 
y    loading factor 
z    loss coefficient 
 
Abbreviation  
CFD       Computational Fluid Dynamics 
G  set of the parameters describing stage geometry 
KPD       measured efficiency  
KPD NS efficiency calculated on model  
PSI         measured pressure coefficient   
PSI NS   pressure coefficient calculated on model  
VLD       vaneless diffuser 
 
1. Introduction 
The complexity of the aerothermodynamic processes in centrifugal compressors does not allow 
defining their performances analytically. Until recently, any simple way to create highly effective 
designs of turbocompressors was very expensive and relied on experiments. 

With the accumulation of experimental data and the development of math models, the mean line 
modeling tools started [1-3]. Nowadays these tools have already been developed and are provided by 
many scientific centers [4-7].  

The mathematical modeling of centrifugal compressors is reduced to the identification of the 
models derived from experimental data. These models have rather complicated analytic representation 
defined by every researcher in view of the operating process and the selected physical model. For 
example, the authors Lunev A., Vyachkilev O., Drozdov Y. [4-5] use hydraulic analogues. The school 
of modeling [6] uses concepts of the boundary layer theory. The Universal modeling method [1-3] 
operates with loss coefficients of blades, vane cascades, and vaneless channels. Arguments of 
algebraic equations are tangential and normal velocity gradients. 

The response surfaces of the objective functions are multi-extremal, thus the process of 
identification of models becomes complicated. The largest problems were related to the necessity of 
calculating the flow in the air-gas channel, the a priori assignment of the generalized analytical 
dependencies of the various losses on the velocity distribution characteristics, the assignment of the 
initial vector of the desired parameters and the search area. These problems are connected with need of 
calculation of a current for flow part, with an aprioristic task of the generalized analytical types of 
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dependences of various losses on characteristics of distribution of velocities, a task of an initial vector 
of required parameters and areas of search of values. 

Despite that, scientists managed to develop mathematical models for calculating gas dynamic 
performances. It opens a way to create computing methods of design and to offer producers high 
effective centrifugal compressors without long and expensive physical experiments. This gave 
confidence to researchers but the above difficulties of math modeling didn't manage to be overcome 
yet. 

Software packages of neural networks application provide solutions to overcome difficulties of 
math model development and identification. Neural networks provide the universal mechanism of 
approximation adequate to multidimensional data files, are capable to be trained and arranged at 
changing conditions, can generalize the gained knowledge on the basis of what is considered as 
systems of artificial intelligence. The basis of functioning of neural networks is made by the 
algorithms of training allowing optimizing process of search of decisions [8-9]. 
 
2. Object and aim 
Neural networks are used in various fields of science. They successfully solve tasks such as function 
approximation and optimization, management and forecasting processes. These capabilities are 
already being used in aerospace, military, medical, industrial, financial and banking fields, data 
transmission. Due to its efficiency and broad range of functions neural networks are becoming more 
common and useful for more complex problems. 

Neural networks play a role of an universal approximator of function of several variables which 
realizes nonlinear function of a type ( )y F x= , where x – an entrance vector (perhaps, an array), and 

y  – the realized function of several variables. Many problems of modeling, identification and data 
processing can be solved by approximation with neural networks. 

The process of approximation by means of neuronets consists of selecting the weight coefficients 
of   defining the degree of importance of the communications between the neurons and this process is 
called “learning of neural networks”. For an assessment of quality of training mean squared error is 
applied to minimize deviations from the entered experimental values.  

Using of gradient methods became possible thanks to the introduction of the sigmoid activation 
function 1( ) (1 )xf x e b- -= + , which is continuous, unipolar and differentiated. In practice it is most 
often used 1b = . But a user can independently select values β that influences a sigmoida form – at 
small b  function is flat, atb ®¥it turns into step function. Such possibility of a variation increases 
flexibility of a neural network in general (Figure 1). 
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        a)                                           b)                                             c) 

Figure 1. Sigmoid activation function of neurons: a) 0.5b = , b) 1b = , c) 2b =  
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Considered the simplest option of a multilayered neural network (Figure 2) with a direct signal 
transmission. The network consists of two layers, in the first layer - two neurons, in the second - one. 
Activation function of neurons is a logical sigmoid function. 

Two arguments come to an input of the first layer come, each one is multiplied by weight
 ijw , the 

weighed values are transmitted to the adder å  together with bias of b . Networks with bias allow to 
form more difficult communications between inputs and exits, than networks without bias, and to 
provide a nonzero exit of neurons. The resultant sum of 1n  serves as argument for function of 
activation of 1f : 1 1

1 11 1 12 2 1n w x w x b= ´ + ´ + , 1 1
12 21 1 2z z zn w x w x b= ´ + ´ + . 

Exits of neurons of the first layer are passed to the second layer, which are described by the neuron 

equation with bias: 1 1
1 11 1 12 2 1

1
1 ( ) ( )

1 1
1 1n w x w x b

a
e eb b- - ´ + ´ +

= =
+ +

. 

  
Figure 2. Scheme of simple option of a two-layer network 

 
 

The scalar 1
1a and 1

2a as increased by weight coefficients of a layer of ijw  move on the adder of 

neuron of the second layer and finally are received at the exit of the second layer: 

21 1 21 1 2
1 2 111 12

2
( )

1
1 lw a lw a b

a
e b- ´ + ´ +

=
+

 by knowing 1
1a and 1

2a we can writen as: 2
1 2( , )y f x x a= = , 

where: 

21 21
211 12
11 1( ) ( )11 1 12 2 21 1 22 21 12 1 11/1

w x w x b w x w x b

lw lw b
e ea e

b b
b

- ´ + ´ + - ´ + ´ +

æ ö
ç ÷- ´ + +
ç ÷
+ +è ø= + . It is 

noticed that the exit of the second layer of 2a can be designated as y, i.e. the exit of the last layer is a 
network exit. The type of total function is deprived of presentation, therefore neural networks are often  
called "a black box". 

During learning procedure there is a control of the network and the weight-matrix 11W , which 
define extent of influence of this argument on a calculated value of function is formed: 

11 1211

21 22

w w
W

w w
é ù

= ê ú
ë û

, where
12 (1,2)w W= – coefficient on which the second element of an entrance of

2x is 

multiplied by transfer of value by the first neuron. 
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Also, during training process, the matrix of the weight coefficients of the output of the layer 21LW  
is formed, the indexes show interrelation between structural elements. 
 

[ ]21
11 12LW lw lw= – coefficients are multiplied on which exits of the first layer before processing by 

neurons of the second layer. 
The above example of equationsis shows inconvenience of use of analytical equations even for a 

simple case (two arguments, two layers). Addition of arguments, neurons or layers of a network 
repeatedly complicates analytical representation of mathematical model. If we add the third neuron in 
the first layer and one more argument of 3x , total number of weight coefficients will increase with 6 to 
12. Therefore in practical use of neural network models people do not work with the equations, but 
with the files represented by computer programs. 

The neural network can function in two modes:  
[1] training, when weight adjustment occurs so that output signals most precisely 

correspond to the experimental;  
[2] operating, when network takes input values and produces outputs. 

The model is approached as much as possible to experimental data which are entered for training, 
but not to real process as the data, which are absolutely precisely reflecting real process, can't be 
obtained. Also at a stage of creation of mathematical model identification it is not possible to avoid 
data-entry errors except as increase the vigilance. Naturally "human" factor reduces the accuracy of 
mathematical model. 

The main advantages of application of neural networks for modeling of characteristics of 
centrifugal compressors are: 

[3] Creation of a model is simpler and quicker than methods, used earlier;  
[4] Creation of structure of model is completely formalized and doesn't demand 

acceptance of preliminary hypotheses of the type of these or those dependences;  
[5] Flexibility of model creation and possibility after learning in process of receipt of 

new data;  
[6] The level of knowledge, necessary for successful application of neural networks, 

is significantly less than the level for traditional methods of modeling; 
[7] Possibility of analysis of parameters influence on the studied characteristics. 

Since 1970th, Y. Galerkin and his group created a number of math models of stages and 
compressors [10-11]. The Method of Universal modeling had been successfully applied in numerous 
designs of centrifugal compressors with power up to 32 MWt and delivering pressure up to 12.5 MPa 
(more than 400 compressors with total power 5 000 MWt). New models, versions 5th and 6th, 
demonstrate high precision of performance modeling [10], but the process of constant improvements 
points out the necessity of alternatives at the same time. 

Measured gas dynamic of specially developed model stages of centrifugal compressors in 
databases are presented in the form of tables or in a graphic form. For use in the computerized gas 
dynamic calculations the performances have to be presented in analytical form. The methods based on 
artificial neural networks are an appropriate tool for this task. Their flexible structure and big 
functionality allow generalizing experimental data in a form, convenient for use [2-3, 8] (Figure 1). 

Neural models of performances were developed for centrifugal compressor stages “impeller + 
vaneless diffuser + return channel” (Figure. 3). Information is provided by R&D Laboratory “Gas 
dynamics of turbomachines”. Data on 39 stages was the object of neural model. Range of geometry 
parameters of stages is presented in Table 1.  

At a preliminary stage some types of models were created with different structure of a neural 
network and parameters of training, from which the network with the smallest mean squared error is 
chosen. 
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For modeling of values of polytrophic efficiency and work coefficient was used the network 
consisting of two layers, 20 neurons in the first layer and 2 neurons in the second layer. The function 
that activates neuron layers in models was called «logsig» (a logical sigmoid). 

Measured and calculated performances of efficiency and pressure coefficient are presented in 
Figure. 4-10 (KPD - measured efficiency, KPD NS – calculated efficiency, PSI – measured pressure 
coefficient, PSI NS – calculated pressure coefficient). Sample of Mu  influence on the performances 
are depicted in Figure. 7. 

The mean squared error for all 567 measured points is 2.5%, for pressure coefficient - 3%. The 
largest inaccuracy is for maximum flow coefficient (about 15%). Compressors never operate at these 
flow rates. For other points of performances the mean squared error for efficiency and for pressure 
coefficient is within 1.5%. 

 
Figure 3. Meridional projection of a stage of the centrifugal compressor  

 
 

Table 1. Range of geometry parameters of stages 
Symbol Min Max Symbol Min Max 

hD  
0,25 0,3916 

4D  1,41 1,56 

sealD  0,436 0,592 
3b  0,0056 0,069 

impz  
13 21 

4b  0,0056 0,069 

bld  
0,007 0,017 

5D  1,41 1,56 

0D  
0,425 0,573 

6D  0,577 0,818 

1D  
0,502 0,668 

5b  0,033 0,085 

1b  
0,0063 0,124 

6b  0,033 0,085 

2b  
0,0063 0,069 

'0
D  0,475 0,625 

1blb  
24,39° 37,61° 

3R  0,0716 0,159 

2blb  22,5° 85,5° 
4R  0,032 0,074 

s1R  
0 0,128 

5blb  8,6 37 
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s2R  
0 0,0653 

r chz  16 32 

3D  
1,01 1,05 

r chd  0,028 0,057 

 
One more sample of neural network application is related to vaneless diffuser performance. 

Numerical investigation by CFD (ANSYS CFX) of diffusers with relative width 0.014–0.10 at 
different Mach and Reynolds numbers is published in [12]. Diffusers were considered as isolated 
channels. Diffuser loss coefficient is presented as function of an inlet flow angle.  

The object of modeling is a friction loss coefficientl  introduced by authors of [1] and used by 
authors of [12]. The loss coefficient z  as calculated by ANSYS CFX is connected with friction loss 

coefficient [1] as follows: 
2

2
32

2

1/ 1 4sinb
DD
D

l z a

æ öæ ö
ç ÷ç ÷
ç ÷ç ÷= ´ - ´
ç ÷ç ÷

ç ÷ç ÷è øè ø

.                                                   

 
                                       a)                                                                            b) 

Figure 4. Performances of the stage: a) 2b =0,0484, 2blb =37 °. Mu  = 0,36. 

b) 2b =0,039, 2blb =52,1 °. Mu  = 0,794 
 

 
a)                                                                    b) 

Figure 5. Performances of the stage: a) 2b =0,0345, 2blb =48,5 °. Mu  = 0,785.  

b) 2b =0,010, 2blb =35 °. Mu  = 0,589.  
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a)                                                                          b) 

Figure 6. Performances of the stage: a) 2b =0,063, 2blb =22,5 °.  Mu  = 0,36.  

b) 2b =0,056, 2blb =85,5 °.  Mu  = 0,92 
For identification of models of friction coefficient l  and loss coefficient z  data on VLD with the 

relative radius 1,60 were chosen. CFD performance calculations were made at velocity coefficient 
(compressibility criterion) 0,39; 0,64 and 0,82. Corresponding Reynolds numbers are 66 10´ , 69,2 10´   
and 610,4 10´ . The flow angle 

2a  changed with a step 5°. The maximum and minimum values of the 
arguments used when forming selection of basic data are specified in table 2. 

 

 
                                       a)                                                                         b) 

 
c) 

Figure 7. Performance of the stage 2b =0,063, 2blb =37 ° at different Mach numbers.  
a) Mu  = 0,36, b) Mu  = 0,648, c) Mu  = 0,864 
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α2

b2/D2
λ

α2

b2/D2λ

 
                                    a)                                                                                 b) 

Figure 8. а) Friction loss coefficient 2
2 2 2

2

( , , ,Re )c c
bf M
D

l a=  0,39M = , 6Re 6,2 10= ´ , 

b) Friction loss coefficient 2
2 2 2

2

( , , ,Re )c c
bf M
D

l a=  0,82M = , 6Re 10,42 10= ´  

Thus, for training of mathematical models, a sample of 308 value vectors was formed. At an early 
stage some models with various configurations (1-3 layers, 10-30 neurons) were tested. After training 
networks with the minimum mean square error were chosen. These are two-layer networks, with one 
neuron in an output layer and 10 neurons in the hidden layer (for 2

2 2
2

( , , )c
bf M
D

l a=  – 25 neurons), 

wherein function of activation of neurons is a logical sigmoid. 
Calculation results of friction coefficient l  are presented in Figure. 8 a, b. The mean squared error is 
2.15%. Mathematical models for coefficient of loss coefficient z were similarly developed, the mean 
squared error is 2.45%. Results of modeling are shown in Figure 9 a, b.  
 

Table 2. Range of VLD parameters 
Parameter Minimum Maximum 

2b  0,014 0,1 

2a  10 45 
l  0,0125 0,0367 
z  0,0263 0,4968 
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α2

ζ b2/D2

 α2

ζ b2/D2

 
a)                                                                               b) 

Figure 9. a) VLD loss coefficient 2
2 2 2

2

( , , ,Re )c c
bf M
D

z a=  0,64M = , 6Re 9,2 10= ´ ; 

b) VLD loss coefficient 2
2 2 2

2

( , , ,Re )c c
bf M
D

z a=  0,39M = , 6Re 6,2 10= ´ . 

 
Coefficients of weight and bias show interrelation between neurons and extent influence of 

parameters on function, characterizing model. Tables of coefficients are not presented due to their 
bulkiness, but only the data of the analysis of weights of the received models are shown. The weights 
averages on all neurons for each entrance argument are presented in table 3.  
 
 
 
 
 
 

Table 3. Average values of weights for input parameters 
Function  Average weight on all neurons for parameter 

2Rec  
2cM  

2b  2a  

2
2 2 2

2

( , , ,Re )c c
bf M
D

l a=  2,57 2,08 3,39 2,22 

2
2 2 2

2

( , , ,Re )c c
bf M
D

z a=  2,27 1,97 4,17 1,44 

 
Average weight coefficients are of the same order. The weight coefficient for 2b  is the biggest.  

 
Conclusion  
Practical application of neural models for the calculations of the compressor characteristics is reduced 
to the data input in model in the same format and an order which was set at identification. Input of the 
basic data can be made for calculations manually or by loading of previously prepared tables. The 
values of friction coefficient calculated based on model and the coefficient of losses can be shown also 
in the form of tables or matrices. These data can be kept or imported for further work with them in 
other programs. 
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The obtained data on the calculation errors by means of the neural networks allows drawing a 
conclusion about the practical importance of the received mathematical models, as a tool for 
generalization and the analysis of the data. 

Thus, the adapted and trained, artificial neural networks represent the paralleling systems, capable 
of training by the analysis the positive and negative impacts. Experiments with neural networks, in 
relation with the modeling of characteristics of centrifugal compressors, showed the encouraging 
results that speak about prospects of this direction, especially at the description of processes with a 
large number of arguments. The authors are ready to provide the interested persons with the above-
described neural network models for use in calculations. 
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