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Abstract. In order to analyse the ultra-deep-water top-tension riser deformation in drilling 

conditions, a nonlinear quasi-static analysis model and equation are established. The riser in 

this model is regarded as a simply supported beam located in the vertical plane and is subjected 

to non-uniform axial and lateral forces. The model and the equation are solved by the finite 

element method. The effects of riser outside diameter, top tension ratio, sea surface current 

velocity, drag force coefficient, floating system drift distance and water depth on the riser 

lateral displacement are discussed. Results show that the riser lateral displacement increase 

with the increase in the sea surface current velocity, drag force coefficient and water depth, 

whereas decrease with the increase in the riser outside diameter, top tension ratio. The top 

tension ratio has an important influence on the riser deformation and it should be set 

reasonably under different circumstances. The drift of the floating system has a complicated 

influence on the riser deformation and it should avoid a large drift distance in the proceedings 

of drilling and production. 

1 Introduction 

Top-tension riser is the key equipment connecting subsea blowout preventer system and floating 

system (drilling platform or ship) in ultra-deep-water oil and natural gas drilling and production. The 

mechanical behavior of the riser is very complicated under the combined action of the top tension and 

the ocean loads. It is a prerequisite for reasonable riser structural design that accurately predicting the 

mechanical behavior of the riser. 

Scholars have developed a number of mathematical models on riser static mechanical behavior[3-

7,11,14-15]. They calculated the deformation of the riser by using finite-difference approximation, finite 

element method and so on. They also analyzed the influence of different parameters on the riser 

deformation. The dynamic mechanical behavior of the riser has also been analyzed by scholars[1-2,8-

10,12-13]. 

The quasi-static characteristic refers to ignore the dynamic effect of the wave load and take the 

maximum load combined with the wave and current as a static load. The above mentioned researches 

are mostly concentrated on the shallow-water and deep-water riser; however, the research of ultra-

deep-water top-tension riser quasi-static mechanical behavior is insufficient. Therefore, the purpose of 

this paper is to obtain the ultra-deep-water riser quasi-static mechanical behavior in drilling and 

production conditions. 

2 Analysis model 

In drilling and production conditions, the riser near the water surface is connected to the floating 

system through the upper flex joint and the riser close to the seabed is connected to the subsea blowout 
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preventer stack through the lower flex joint. The riser at the top end can move with the drift of the 

floating system. The simplified top-tension riser quasi-static mechanical model in ultra deep-water can 

be expressed in figure 1. 

 
Figure 1: The simplified top-tension riser quasi-static mechanical model 

The analysis model is regarded as a beam located in the vertical plane and subjected to both non-

uniform axil force and lateral force. The riser differential control equation [5,7,14] can be represented as: 
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Where, EI is the riser flexural rigidity, N·m2; ( )T z is the riser effective axil force along the z axis, 

N; w is the per unit length wet weight of the riser, N/m; ( )F z is the lateral force along the z axis, N. 

As is shown in figure 1, the boundary of equation (1) can be written as: 
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Where, bK is the rotation stiffness of the lower flex joint, N·m/deg; uK is the rotation stiffness of 

the upper flex joint, N·m/deg; H is the water depth, m; ps is the floating system drift distance, m. 

3 Riser force calculation 

3.1 Effective axial tension 

The effective axial tension on the riser cross-section considering the different pressures between the 

sea water and the internal fluid [6] can be represented as: 

top( ) d
H

z
T z T w z     (3) 

Where, topT is the top tension generated at the top end of the riser, N. 

The per unit length wet weight of the riser system can be represented as: 
22 2 2

r f w( )
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 (4) 

Where, r is the density of riser, kg/m3; f is the density of internal fluid, kg/m3; w is the density 

of sea water, kg/m3; D is the outer diameter of the riser, m; d is the inner diameter of the riser, m; g is 

the gravitational acceleration, m/s2. 
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3.2 Lateral force 

The combined wave and current per unit length force can be calculated by the Morison’s equation 

[9,14,16]: 
2

D w w c w c M w w( ) 0.5 ( ) / 4f z C D u u u u C D a         (5) 

Where, DC is the drag force coefficient, a dimensionless quantity; wu is the horizontal velocity of 

sea wave particle, m/s; cu is the current velocity, m/s; MC is the inertia force coefficient, a 

dimensionless quantity; wa is the horizontal acceleration of sea wave particle, m/s2. 

The current velocity under a certain depth can be represented as: 

c 0( ) ( )u z u z H    (6) 

Where, 0u is the sea surface current velocity, m/s. 

For ultra deep-water, the airy wave theory[14,16] is accurate enough to calculate the wave horizontal 

velocity, which is: 

( )

w e sin( )
2

k z Hgh
u kx t



    (7) 

Where, h is the wave height, m; k is the wave number, a dimensionless quantity;  is the wave 

circular frequency, rad/s. 

The acceleration of wave particle points can be obtained by derivation of equation (7) with respect 

to t . 

4 Model solution 

Equation (1) is a complex nonlinear differential equation and it is difficult to get the solution by the 

analytical solution method. Therefore, in this paper, the finite element method was adopted. The 

vertical and horizontal bending beam element was adopted. The linear and cubic Hermite interpolation 

functions were used to discretize equation (1). 

The shape function is shown as follows. 
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Where, l is the element length. 

The element stiffness matrix is composed of bending stiffness matrix and geometric stiffness 

matrix, which are caused by effective axial tension along the riser. Thus, the element stiffness matrix 

can be determined as: 
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So, equation (1) can be expressed as: 

[ ]{ } { }K u f    (11) 

Where, [ ]K is the structural stiffness matrix; { }u is the nodal displacement; { }f is the load vectors 

of the node. 

The Newton-Raphson iterative method was adopted to solve equation (11). 
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5 Application and case study 

5.1 Validity of the analysis model 

The analysis mode of this study has also been validated against the Abaqus (Beam23H) result of 

drilling riser in ultra-deep-water. The riser outer diameter is 533.4mm, the riser wall thickness is 

25.4mm, the elastic modulus of the riser is 210GPa, the riser density is 7850kg/m3, the water depth is 

2000m, the sea water density is 1030kg/m3, the wave height is 8m, the wave period is 10s, the sea 

surface current velocity is 1.5m/s, the internal fluid density is 1600kg/m3, the drag force coefficient is 

1.2, the inertia force coefficient is 2.0, the top tension is 1.6G (G is the riser system wet weight), the 

floating system drift distance is 0. In order to calculate the maximum value of the riser deflection, the 

rotational stiffness of the upper flex joint and the lower flex joint are all set to zero. 

The comparison of the lateral displacement between the numerical result and the Abaqus result is 

shown in figure 2. It is found that the numerical result agree well with the Abaqus result. The 

numerical result are slight larger than Abaqus result. The slight difference between the numerical and 

the Abaqus result may be attributed to computational errors. 
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Figure 2: Comparison of the numerical result and Abaqus result 

5.2 Analysis of the calculation result 

As is shown in figure 2, the riser lateral displacement increases at first along the water depth direction 

and reaches the maximum value of 13.04m at the water depth of 860m and then decreases. The reason 

for this phenomenon is that although the lateral force is relatively large in the top area, but the 

influence of the axial force greater than the influence of the lateral force; so, the lateral displacement is 

relatively small. With the increase of the water depth, the influence of the lateral force gradually 

greater than the influence of the axial force on the riser lateral displacement; so, the lateral 

displacement is relatively large. With the continuous increase of the water depth, the lateral force is 

very small in the bottom area, the influence of the axial force greater than the influence of the lateral 

force; so, the lateral displacement is relatively small. 

5.3 Analysis of quasi-static influencing factors 

In the process of drilling, there are a number of influencing factors, such as riser size, and so on, which 

could affect riser quasi-static mechanical behavior. In order to better guide the quasi-static mechanical 

behavior of the riser in ultra-deep-water environment, six influencing factors are discussed as follows. 

5.3.1 Riser outside diameter. In case the other parameters are constant (as defined in 5.1), the 

variations of riser deflection with riser outside diameter are shown in figure 3. The variation of the 

riser outside diameter has an influence on the riser lateral displacement. The effect of this influence 

has two aspects: first, the weight of the riser system increases with the increase in the outside diameter, 
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which causes the axial tension increasing; second, with the increase of the outside diameter, the 

flexural rigidity of the riser increases. Both effects have a tendency to reduce the riser deflection. 

Therefore, as is shown in figure 3, with the increase of the riser outside diameter, the riser lateral 

displacement decreases gradually. Moreover, the maximum positions of the riser lateral displacement 

for these models are all at the water depth of 860m. 
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Figure 3: Variation of riser lateral displacement with riser outside diameter 

5.3.2 Top tension ratio. In case the other parameters are constant, the variations of riser deflection with 

top tension are shown in figure 4. As analyzed in 5.3.1, the top tension has a tendency to reduce the 

riser deflection. Therefore, as can be seen from figure 4, the riser lateral displacement decreases 

gradually with the increase in the top tension ratio. In 1.2G top tension, the maximum riser later 

displacement up to 20.45m, but in 2.0G top tension, the maximum riser later displacement is only 

9.71m. Moreover, with the increase of the top tension ratio, the depth of the maximum riser lateral 

displacement decreases gradually. In 1.2G top tension, the depth of the maximum riser lateral 

displacement is 950m, but in 2.0G top tension, the depth is 825m. 
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Figure 4: Variation of riser lateral displacement with top tension ratio 

5.3.3 Sea surface current velocity. In case the other parameters are constant, the variations of riser 

deflection with sea surface current velocity are shown in figure 5. As can be seen from equation (6) 

and equation (7), the lateral force will increases with the increase in the surface current velocity, which 

has a positive influence on the riser deflection. Therefore, as can be seen from figure 5, with the 
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increase of the surface current velocity, the lateral displacement increase significantly. Moreover, both 

the maximum positions of the riser lateral displacement for these models are all at the water depth of 

860m. 
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Figure 5: Variation of riser lateral displacement with sea surface current velocity 

5.3.4 Drag force coefficient. In case the other parameters are constant, the variations of riser deflection 

with drag force coefficient are shown in figure 6. As is shown in figure 6, with the increase of the drag 

force coefficient, the riser lateral displacement increases significantly. The reason for this phenomenon 

is that the lateral force increases with the increase in the drag force coefficient, which can be seen 

from equation (5). Moreover, the maximum positions of the riser lateral displacement for these models 

are all at the water depth of 860m. 
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Figure 6: Variation of riser lateral displacement with drag force coefficient 

5.3.5 Floating system drift distance. In case the other parameters are constant, the variations of riser 

deflection with floating system drift distance are shown in figure 7. As is shown in figure 7, there is a 

significant decrease in the depth of the maximum riser lateral displacement with the increase in the 

drift distance. 
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Figure 7: Variation of riser lateral displacement with floating system drift distance 

5.3.6 Water depth. In case the other parameters are constant, the variations of riser deflection with 

water depth are shown in figure 8.As is shown in figure 8, with the increase of the water depth, the 

riser lateral displacement increases gradually. In addition, the depth of the maximum riser lateral 

displacement is roughly in a linear relationship with the water depth. 

0 2 4 6 8 10 12 14 16 18 20 22 24
3000

2500

2000

1500

1000

500

0

 

 

W
a

te
r
 d

ep
th

/m

Riser lateral displacement/m

 1000m

 1500m

 2000m

 2500m

 3000m

 
Figure 8: Variation of riser lateral displacement with water depth 

6 Conclusions 

(1) In the case where the floating system has no drift, with the increase of the top tension ratio, the 

riser lateral displacement decrease gradually and the depth of the maximum riser lateral displacement 

decreases gradually. The top tension has a significant influence on the riser deformation and the depth 

of the maximum riser lateral displacement is only related to the top tension ratio. 

(2) In the case where the floating system has no drift, with the increase of the lateral force due to the 

change in the environmental parameters, the riser lateral displacement increase significantly. 

(3) In the case where the floating system has no drift, the variation of the riser outside diameter has a 

significant influence on the riser lateral displacement. 

(4) The floating system drift and the water depth have an important influence on the riser deformation. 

Therefore, the riser structural parameters should be designed rationally according to the water depth, 

and the floating system drift distance should be strictly controlled in the actual operating environment. 
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