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Abstract. Recently, the theoretical prediction on carrier mobility of two-dimensional (2D) ma-

terials has aroused wild attention. At present, there is still a large gap between the theoretical 

prediction and the device performance of the semiconductor based on the 2D layer semicon-

ductor materials such as graphene. It is particularly important to theoretically design and 

screen the high-performance 2D layered semiconductor materials with suitable band gap and 

high carrier mobility. This paper introduces some 2D materials with fine properties and deduc-

es the formula for mobility of the isotropic materials on the basis of the deformation potential 

theory and Fermic golden rule under acoustic phonon scattering conditions, and then discusses 

the carrier mobility of anisotropic materials with Dirac cones. We point out the misconceptions 

in the existing literature and discuss the correct ones. 

1 Introduction 

With Geim’s team in the University of Manchester successfully isolating the single atomic layered 

graphene by 2004, 2D materials with huge potential for the field of basic science and applied research 

has drawn widespread attention. For instance, as the electrical materials with great properties, they can 

be made into excellent field effect transistors(FET). 

In general, the excellent FET requires a suitable band gap and high mobility. Materials with Dirac 

cones such as graphene own the extremely high electron mobility due to the low electron effective 

mass(
5 2 1 12 10 /cm V S  [1]). However, to obtain a suitable band gap needs to modify the material. 

Unfortunately, most modification methods expanding the band gap of graphene will inevitably reduce 

the mobility [2]. Meanwhile, 2D semiconductor materials have gradually came into view [3], such as 

black phosphorus [4,5], graphyne [6], transition metal dichalcogenides (TMDs) [7,8], transition metal 

carbides and nitrides (MXene) [9,11], etc. They own the suitable band gap as well as the high mobili-

ty, which can be the potential candidate material for the high-performance FET. 

These semiconductor materials are usually anisotropic, which can lead to the mechanical, optical 

and electrical response depended on the angle. It also illustrates the potential application value of ani-

sotropic semiconductor materials as sensors. Therefore, it is especially important to understand the an-

isotropic carrier mobility. This paper will focus on the calculation of carrier mobility of the anistropic 

material. 

2 Dirac material 

Dirac cone is a unique band structure, whose band looks like two inverted circular cone with their 

apexes connected at the separated Fermi level of filled and unfilled electrons. Since the structure satis-

fies the Dirac equation which describes the energy-momentum relation of relativistic particles, it is 

called Dirac cone. The low-energy behavior of the electrons in the two-dimensional Dirac system re-
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quires a Dirac equation description, which behaves as a relativistic particle behavior with an effective 

mass of zero and a velocity close to the speed of light. Materials with a Dirac cone structure have 

many excellent physical properties, such as high carrier mobility and anomalous quantum Hall effect. 

Graphene is a 2D monolayer material, which is a 2D hexagonal honeycomb lattice structure formed 

by the carbon atom in the sp2 hybridization. The atomic structure is Fig. 1 (a). According to the first 

principle and tightly bound Hamiltonian the band structure can be shown in Fig. 1 (b) [13]. 

Figure 1. (a)Graphene atomic structure (b)Graphene band structure 

However, in the case of isotropic materials such as graphene, the modification of the band gap will 

reduce its mobility, while the 2D semiconductor material, which is an anisotropic Dirac material, has 

an appropriate band gap and a good mobility, with a broader application prospects. Daniel Malko [6] 

et al. studied several graphyne such as  -graphyne and 6,6,12-graphyne with the Dirac cone struc-

ture. Fig. 2 shows their atomic structure [6]. 

Fig. 3 and 4 illustrate the band structure of  -graphyne and 6,6,12-graphyne respectively. It is 

worth noting that   -graphyne has the same hexagonal symmetry as graphene, which is generally 

considered to be a necessary condition for the existence of the Dirac cone. However, the band struc-

ture of the 6,6,12-graphyne has proved this view is wrong. The 6,6,12-graphyne has a rectangular 

symmetry but there are still two pairs of Dirac points in the Brillouin area. Fig. 5(d) and (e) show the 

valence and energy band of the 6,6,12-graphyne at two adjacent Dirac points. 

Figure 2. (a). -graphyne atomic structure (b)6,6,12-graphyne atomic structure 

Figure 3.  -graphyne band structure 
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Figure 4. 6,6,12-graphyne band structure 

The results of Daniel Malko et al. show that the chemically equivalent carbon atoms and hexagonal 

symmetries in graphene are not necessary conditions for the existence of Dirac cone, suggesting that 

the 2D materials which are composed of non-carbon atoms and do not even have hexagonal symmetry 

may also have Dirac cone as well as the excellent electrical properties. Take black phosphorus firstly 

prepared in 1914 for instance. In the periodic table, the elemental phosphorus in the lower right corner 

of the carbon element has an atomic structure similar to that of carbon. Two-dimensional crystal black 

phosphorus is the most stable allotrope of phosphorus. Different from the sp2 hybrid bonds of carbon 

atoms in the graphite, phosphorus atoms have five valence electrons, forming the sp3 hybrid bond 

with the adjacent three phosphorus atoms, which determines the differences between the 2D plane of 

phosphorus and elements in group IV that the plane of phosphorus has anisotropic folds, which can be 

seen in Fig.5[5]. Figure 6 [4] shows the black phosphorus band structure solved by density functional 

theory [14,15,16]. 

Figure 5. (a)Side view of black phosphorus crystal (b)Top view of single layer black phosphorus 
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Figure 6. (a)Electron band structure of bulk black phosphorus;(b)Brillouin area of bulk black phos-

phorus;(c)Electron band structure of monolayer black phosphorus;(d)Brillouin area of monolayer 

black phosphorus 

3 Deformation potential theory and the general process of calculating the carrier mobility  

The deformation potential theory was first proposed by J. Bardeen et al., which converts the phonon 

scattering process into a change of an effective potential field that can be perceived by electrons. Ac-

cording to the theory, the energy change is proportional to the size of the lattice deformation. Based on 

the general theory of scattering, the transition probability can be given, and then the physical quanti-

ties such as relaxation time and carrier mobility can be calculated. 

At room temperature, based on the deformation potential theory and Fermic golden rule, including 

the acoustic phonon scattering, the isotropic semiconducting state and the probability of scattering: 
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Where E1 is the deformation potential constant, which describes the vertical movement of band un-

der the strain; C11 is the elastic modulus mainly affecting the velocity and number of scattered pho-

nons; A is the 2D semiconductor area;  is Planck constant; T is temperature; kB is the Boltzmann 

constant; δ(εk-εk＇) is the state of the electron energy. 

For graphene, at room temperature, based on the deformation potential theory and Fermic golden 

rule, including the acoustic phonon scattering, the isotropic semiconducting state and the probability 

of scattering: 
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Note that the difference with the two-dimensional semiconductor is that there is a parameter Eβ, 

which is called the deformation transition constant mainly reflecting the Dirac cone in the horizontal 
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movement under the strain. Due to its linear dispersion and zero band gap characteristics, the horizon-

tal movement effect of the energy band in Dirac cone cannot be neglected (negligible in the semicon-

ductor). Also due to this effect, the influence of the transverse wave phonon must be considered. Eβ,44 

is the deformation constant corresponding to the tensile strain; C44 is the elastic modulus component 

corresponding to the transverse wave phonon; Eβ,11 is the deformation constant corresponding to the 

tangential strain; C11 is the elastic modulus component corresponding to the longitudinal wave pho-

non; θ is the argument of k＇; θ＇is the argument of k . 

Then the relaxation time can be calculated: 
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The conductance and carrier mobility can be calculated based on the Boltzmann equation: 
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Whereτ(k) is the relaxation time depending on energy; σxx is the conductivity; g is degeneracy; nF is 

the Fermi-Dirac distribution; n is the carrier density; μx is the carrier mobility. 

For isotropic 2D semiconductors, the result is: 
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4 The misconcerption on anistropic semiconductor  

There are a lot of related work on the calculation of two-dimensional semiconductor electron mobility, 

but they have a misunderstanding of the mobility formula, using the relevant formula [2] as follows: 
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Where me* is the effective mass of the transmission direction; md is the average effective mass de-

termined by md=(mx*my*)1/2 ; E1 is the deformation potential constant; C2D is the elastic modulus of the 

longitudinal wave phonon. 

The formula has no problem with the handling of anisotropic effects of effective mass, but they be-

lieve that the electron mobility in the x direction is only related to the x component of the deformation 

potential tensor and the elastic modulus. Obviously this is an erroneous understanding, since electrons 

in the x-direction motion are inevitably scattered by the phonons of the y-direction so that their mo-

bility must also be related to the y component of the deformation potential tensor and the elastic 

modulus. 

5 The result of anisotropic Dirac cone  

The mobility formula for the Dirac cone material of the anisotropic deformation potential constant has 

been related to the theoretical derivation. The difference from the isotropic ones is that the defor-

mation potential constant becomes a second order tensor. Correspondingly, the change of the effective 

potential needs to be calculated by the transuvection of the strain tensor and the deformation potential 

tensor. Hence E1 in Eq.(2) should be replaced by E1(q): 
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Where θ is the angle between k＇ and k ; θ0 is the angle between k and coordinate axis; θq is the 

argument of q. 

Correspondingly, Eβ,11 should be replaced by  

Eβ,11(q): 
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Based on Eq. (2)(3)(4)(5)(6)(9)(10), the carrier mobility can be calculated: 
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Where E̅1,ΔE1,E̅β,11x,ΔEβ,11x can be seen as follows: 
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6 Conclusion 

Since the graphene has been successfully prepared, 2D material has been widely concerned. The semi-

conductor 2D crystal material, typical of graphene, graphyne and black phosphorus, has excellent 

characteristics such as high carrier mobility due to its novel and unique Dirac cone structure. For the 

isotropic material, based on the deformation potential theory and acoustic phonon scattering, the tran-

sition probability based on the general theory of scattering can be given. Then the physical quantities 

such as relaxation time and carrier mobility can be calculated by solving the Boltzmann equation. For 

anisotropic materials, the conclusions of carrier mobility calculations in most existing literature have 

misinterpretation of variables affecting the electron mobility in the x direction. In fact, for the aniso-

tropic material, the deformation potential constant becomes a second order tensor. Hence E1 in the 

transition probability expression needs to be replaced by a second order tensor, E1(q). Finally, we 

summarize the carrier mobility calculation results of the anisotropic Dirac cones. 

Reference 

[1] Morozov, S.V. Novoselov, K.S.& Katsnelson, M.I. et al. 2007, Giant intrinsic carrier mobilities in 

graphene and its bilayer J.Phys. Rev. Lett, 100(1):016602  



7

1234567890

ISAMSE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 231 (2017) 012116 doi:10.1088/1757-899X/231/1/012116

[2] Xia, F. Wang, H& Jia, Y.2014. Rediscovering black phosphorus as an anisotropic layered material 

for optoelectronics and electronics. Nat. Commun.5:4458 

[3] Fivaz, R. Mooser, E. 1967. Mobility of charge carriers in semiconducting layer structures. Phys. 

Rev.163(3):743-755 

[4] Qiao, X. Kong, X. Hu, Z. X. Yang, F. Ji, W. 2014. High-mobility transport anisotropy and linear 

dichroism in few-layer black phosphorus, Nat. Commun., 5:4475 

[5] Ling, X. Wang, H. Huang, S. Xia, F. Dresselhaus, MS. 2015. The Renaissance of Black Phospho-

rus, Proceeding of the National Academy of Science, 112(15):4523 

[6] Malko, D. Neiss, C. Viñes, F. 2012. A Görling;Competition for Graphene: Graphynes with Direc-

tion-Dependent Dirac Cones, Phys Rev Lett. 108(8):086804 

[7] Wang, Z. M. 2014. MoS2: Materials, Physics, and Devices, Springer International Publishing 

[8] Wang, Q. H. Kalantarzadeh, K. Kis, A. Coleman, J. N. Strano, M. S. 2012. Electronics and optoe-

lectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7(11):699-712  

[9] Vogt., P. De, P. P& Quaresima, C. et al. 2012. Silicene: compelling experimental evidence for gra-

phenelike twodimensional silicon. Phys. Rev. Lett. 108(15):155501 

[10] Houssa, M. Scalise& E. Sankaran, K. et al. 2011. Electronic properties of hydrogenated silicene 

and germanene. Appl. Phys. Lett. 98(22):183  

[11] Bianco, E. Butler, S& Jiang, S. et al. 2013. Stability and exfoliation of germanane: a germanium 

graphane analogue. ACS Nano. 7(5):4414-21  

[12] Li, Z. Wang, J.& Liu, Z. 2014 Intrinsic Carrier Mobility of Dirac Cones: The Limitations of De-

formation Potential Theory. J. Chem. Phys. 141(14):183. 

[13] Wang, J. Deng, S. & Liu Z. el al. 2015. The rare two-dimensional materials with Dirac cones. 

NSR..2(1) 

[14] Klime, J. Bowler, D. R.& Michaelides, A. 2011. A. Van der Waals density functionals applied to 

solids. Phys. Rev.B. 83(19):772-772 

[15] Heyd, J. 2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 

118(18):8207-8215 

[16] Heyd, J. Gustavo, E. 2006. Erratum: ‘Hybrid functionals based on a screened Coulomb potential’. 

J. Chem. Phys.124, 219906  


