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Abstract. To overcome those disadvantages that BP (Back Propagation) neural network and 

conventional Particle Swarm Optimization (PSO) converge at the global best particle 

repeatedly in early stage and is easy trapped in local optima and with low diagnosis accuracy 

when being applied in converter transformer fault diagnosis, we come up with the improved 

PSO-BP neural network to improve the accuracy rate. This algorithm improves the inertia 

weight Equation by using the attenuation strategy based on concave function to avoid the 

premature convergence of PSO algorithm and Time-Varying Acceleration Coefficient (TVAC) 

strategy was adopted to balance the local search and global search ability. At last the 

simulation results prove that the proposed approach has a better ability in optimizing BP neural 

network in terms of network output error, global searching performance and diagnosis 

accuracy. 

1 Introduction 

The converter transformer is one of the most important electrical equipment in the DC transmission 

project. The fault and outage of the large converter transformer may bring huge economic loss and 

social disaster to the power grid and enterprises. Therefore, the fault diagnosis research of the 

converter transformer is especially important[1]. Dissolved gas analysis (DGA) in oil is the most 

widely used, most direct and effective technical means for fault diagnosis of converter transformers. It 

determined the fault type of converter transformer by the content analysis of main characteristics gas 

come from decomposition of hydrogen(H2), carbon monoxide (CO), acetylene (C2H2) Ethylene (C2H4), 

methane (CH4), ethane (C2H6) and other insulating oil[1-3]. 

In short, the converter transformer fault diagnosis can be seen as a pattern recognition process. 

Many artificial intelligence methods have been introduced into the converter transformer fault 

diagnosis, such as genetic algorithm, artificial neural network, Bayesian classifier and support vector 

machine, etc. In these methods, the BP neural network becomes a more mature method for performing 

rheological fault diagnosis because of its good nonlinear mapping ability. 

This paper combined with the actual fault diagnosis of converter transformer optimizes from inertia 

weight and acceleration factor settings, etc. based on the standard PSO algorithm, proposes an 

improved PSO algorithm, which is combined with BP neural network. The fault diagnosis model of 

converter transformer is established based on this basis. By comparing the simulation example with 
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the single BP algorithm and the standard PSO-BP algorithm, it is proved that the algorithm proposed 

in this paper has better optimization performance and higher fault diagnosis rate. 

2 PSO algorithm and its improvement  

PSO algorithm is an optimization algorithm based on the study of foraging behavior of birds and fish. 

The algorithm uses the interaction between abstract particles and information sharing to guide the 

optimal solution in the solution space. Because PSO algorithm is simple, rapid convergence, easy to 

achieve, etc. So it is widely used to solve the problem of the social and economic, engineering and 

other needs to optimize, such as function optimization, pattern recognition and decision support, etc. 

2.1 Standard PSO algorithm 

The standard PSO algorithm principle searched by the usage of the group of N particles in the D-

dimensional space at a certain speed flight, follow the optimal particles. The system is initialized to a 

set of random solutions, which set the velocity range and initial test position of each particle. Each 

particle updates the individual position according to the individual extremum and the global extremum, 

and then searches for the optimal value by iteration. The particle swarm algorithm's speed and position 

update Equation is:.  
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Where: j  is current iteration times;   is the inertia weight; 
j

idV is the current velocity of the particle; 
j

idX  is the current position of the particle; 
j

idP is the optimal position of the individual particle; 
j

gdP  is 

the optimal position of the whole particle group; 1c  and 2c  are the acceleration factor, 1r , 2r  are a 

random number within [0,1]. 

2.2 Improved PSO algorithm 

2.2.1 Inertia weight improvement. In the standard PSO algorithm, the inertia weight  is usually set as 

a fixed constant, which proves that this setting limits the trend of particle expansion search space and 

the ability to explore the new region, which is not conducive to the global optimization and fast 

convergence of the algorithm. In order to further improve the performance of the algorithm, the 

dynamic linear adaptive strategy proposed in literature [4] is used to adjust the inertia weight , which 

is linearly attenuated as the iterative process increases, thus accelerating the convergence speed of the 

algorithm. The inertia weight modification Equation is as follows: 
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Where: max , min are the upper and lower limits of the inertia weight, respectively, j , maxj  are the 

current iterations number and the maximum iterations number. 

On the basis of this literature[5], three kinds of nonlinear weight attenuation methods of concave 

function curve, convex function curve and exponential curve are proposed. The results show that the 

nonlinear attenuation method based on concave function compared with the attenuation method of 

linear function is more effective to avoid premature convergence of PSO algorithm. Therefore, this 

paper adopts the attenuation strategy based on concave function, and improves the Equation (3) 

2.2.2 Introduction of time-varying acceleration factor. In PSO algorithm, 1c , 2c  are the cognitive 

acceleration factor and social acceleration factor, respectively, reflecting the particle's own experience 

and social experience ratio, determine the particle movement direction and the final convergence 

results of the algorithm. 1c  is responsible for adjusting the particle to fly to their best position direction 

step, if 1c is too small, then the particle lacks of their own experience, it is easy to fall into the local 

optimum. 2c is responsible for adjusting the particles to the best position the flight step of the overall, 
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if 2c is too small, the exchange of information between the particles is too weak, it only rely on their 

own experience to search, the probability of obtaining the global optimal solution is very small.  

Therefore, the literature[6] proposed a PSO improved algorithm for accelerating factors, the 

algorithm used in the particle velocity update, adopt time-varying acceleration factor (TVAC), the 

cognitive acceleration factor 1c with the linear acceleration of the iteration process at the same time, 

social acceleration factor 2c  is linearly reduced, so as to avoid the local optimization of the particles in 

the early stage of the algorithm, and encourage the particles to search the global optimal solution at the 

end of the algorithm: 

1 1 1 1 max( )( / )i f ic c c c j j     (4) 

2 2 2 2 max( )( / )i f ic c c c j j     (5) 

Where 1 fc and 1ic  are the initial value of the acceleration factor, 2 fc and 2 fc are the final value of the 

acceleration factor; maxj is the maximum number of iterations; j  is the current number of iterations. 

In this paper, it introduces the time-varying acceleration factor (TVAC), considering the influence of 

all particles on the search, we can balance the local optimal search in the early algorithm and global 

optimal convergence of in the late algorithm, enhance the global optimal solution searching ability. 

3 Improved PSO Algorithm for BP Neural Network 

3.1 Standard BP Neural Network 

BP neural network is a multi-layer feedforward neural network, which has more powerful computing 

ability and self-learning ability compared with other neural networks. BP neural network is generally 

composed of input layer, hidden layer, output layer, and its learning rule is used of the gradient 

descent method, the learning process is composed of forward and reverse propagation. The signal is 

first input by the input layer and passed through the activation function of the hidden layer node to the 

output layer. If the error of the forward propagation output does not reach the expected precision, the 

error is propagated backwards, and the error is distributed to all the elements of the layer. The weights 

and thresholds of each layer of neurons are repeatedly modified according to the negative direction of 

the error signal, and the output error of the network is reduced to the set error range. The BP neural 

network model is shown in Fig.1. 

input layer hidden layer output layer

 

Fig 1: BP neural network algorithm model 

3.2 Optimization of Improved PSO Algorithm to BP Neural Network 

The standard BP neural network uses the gradient descent method to modify the weight and threshold, 

but the gradient descent algorithm usually has the disadvantage of easy to fall into the local minimum, 

easy to oscillate and slow convergence. The optimization of PSO algorithm to BP neural network 

combines BP neural network with PSO algorithm. The optimal threshold of BP network is used to 

correspond to the position of PSO. The output error of neural network corresponds to the fitness 

function of PSO, The optimal network threshold is obtained by finding the optimal particle position, 

so as to realize the optimization of BP network. The fitness function is given by equation (6) 
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Where jkq is the expected output value, jky is the actual output value, n  is the network output node 

number, m  is the number of training samples. The optimization steps of PSO algorithm to BP neural 

network are as follows: 

Step 1: Initialize the improved PSO algorithm parameters, set the number of particles P, particle 

dimension d , the maximum number of iterations maxj and network error accuracy, inertia weight  and 

time-varying acceleration factor upper and lower limits.  

Step 2: Establish correspondence of an improved PSO algorithm and BP network: determine the 

layer number of neural networks, the number of neurons per layer, and the particle dimension that 

need to optimize.  

Step 3: Calculate the fitness of each particle, update the optimal position 
id

jP of the individual 

particles and the optimal position in the whole particle group according to the fitness value.  

Step 4: According to the Equations (1) and (2) to adjust the flight speed of the particles and the 

position in the whole particle group, adjust the inertia weight value and the time-varying acceleration 

factor according to equations (4) to (6), recalculate the particle fitness. 

Step 5: Check whether the termination condition is reached. If the current fitness satisfies the error 

accuracy requirement or reaches the maximum number of iterations, the iteration is stopped and the 

global optimal value of the current particle population is output, that corresponds to the final weight 

and threshold of the BP neural network, or jump to step (3) to continue execution. 

4 Simulation examples 

In this paper, five kinds of characteristic gas contents in converter oil such as hydrogen (H2), acetylene 

(C2H2), ethylene (C2H4), methane (CH4) and ethane (C2H6) are input as BP neural network. The output 

status is five states of normal state, high energy discharge, low energy discharge, low temperature and 

medium temperature fault. In order to reduce the difference in the numerical content between the 

various gases and the impact of dispersion, the original gas data were normalized[7]. Therefore, the 

network structure uses 5 input, 5 output structure. 

4.1 Parameter setting 

4.1.1 Setting BP neural network parameters. In the BP neural network, construct of 5- l -5 neural 

network structure, the hidden layer neurons are estimated by using the Equation (7): 

l n m a  
   (7) 

Where m  indicates the nerve node number of the input layer; n  indicates the nerve node s of 

output layer; a  is any integer between 0 to 9.   

Use the standard BP algorithm for loop testing, comparing the final error size after 200 learning, 

according to the error size to determine the optimal value of the network to find the final mean square 

error of each l  value, the results shown in Table 1, when the number of nodes is 9 , the error is 

minimum, so l = 9. 

Table 1: Results of different nodes of hidden layers BP network 

nodes final error nodes final error 

4 0.0866 9 0.0391 

5 0.0745 10 0.0453 

6 0.0669 11 0.0536 

7 0.0621 12 0.0614 

8 0.0442 13 0.0716 

4.1.2 Setting PSO algorithm parameters. The number of particles is P = 20, the particle dimension is 
d  = l ×m + l ×n + m + n =100, the maximum number of iterations is 200, the location range of the 

particle swarm is [-1,1], and the velocity range of the particle swarm is [-2,2]. The most important 
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parameters of the PSO algorithm are the inertia weight  and the acceleration factor 1c , 2c . According 

to the literature[8], the standard PSO algorithm is best diagnosed when the inertia weight is in the 

range of max = 0.9, min =0.4, acceleration factor 1c = 2c =2. For the improved PSO algorithm proposed 

in this paper, the upper and lower limits of the time-varying acceleration factor are 1ic =2, 1 fc =0.2, 

2 fc =0.2, 2 fc =2, and the range of inertia weight is the same as the standard PSO’s.  

4.2 Algorithm comparison 

The DGA data of 104 sets of converter transformers were collected, 60 sets of them were used to train 

the BP neural network, and 44 sets of data were used as test samples. After the parameters were set, 

the standard BP algorithm, PSO-BP algorithm and the improvement PSO-BP algorithm in this paper 

proposed are used to simulate. Training error of three methods and fault diagnosis accuracy shown in 

Table 2, the network output error curve shown in Figure 2, figure 3 is the fitness curve of PSO and 

improved PSO algorithm to BP neural network parameter optimization.  

Table 2: Training error and diagnosis precision of three methods 

method output error 
diagnosis 

precision 

BP 0.0386 81.8% 

PSO-BP 0.0174 86.4% 

improved PSO-BP 0.0112 93.2% 

 

 

Fig 2: network output error curve 

 

Fig 3: fitness curves 

As shown in Figure 2, the output error of the standard BP neural network began to decline rapidly, 

the decline rate reached the maximum when the number of training is 11 times, and then gradually 

decline gentle in the curve, training 57 times has reached convergence, the late reduction is minimal, 

the minimum training error is 0.0386, the diagnostic accuracy of 81.8% is the lowest among the three. 

The other two PSO-optimized BP algorithms show considerable performance in the early iteration. In 

the first 30 times training, avoid the standard BP algorithm premature convergence into disadvantages 

of local optimization. In the 35 times training, the gradient of the left and right sides dropped into the 

depth optimization. But the PSO-BP algorithm also failed to jump out of the local optimum. The curve 

was stabilized at 60 times, and the training error was 0.0174. The training error was reduced by 50% 

compared with the standard BP algorithm. The diagnostic accuracy rate also increased to 86.4%. In 
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this paper, the improved PSO-BP algorithm curve is reduced again in the short-term second gentle and 

then into the global optimization. Finally, it converges at 101 times, the training error is 0.0112, and 

the fault accuracy rate of 93.2% is the highest in three. 

In addition, the fitness curves of the two PSO optimization algorithms are shown in Fig. 3. It can be 

seen that the fitness curve of PSO-BP converges rapidly in the first 20 iterative periods, but it is 

basically gentle in the later period, and the fitness value is no longer change. And the early 

convergence of improvement of the PSO-BP’s fitness curve is not as fast as the unmodified PSO-BP, 

but it has been in the descending state. It shows that the algorithm can effectively balance the global 

and local optimal performance of the particle during the training process, So that the particles have 

been searching, the final fitness value is smaller than the unmodified PSO algorithm, resulting in 

better training error and fault accuracy. 

5 Conclusion 

In this paper, combine PSO algorithm and BP neural network to research on fault diagnosis of 

converter transformer. In view of the inherent shortcomings of standard PSO algorithm, the inertia 

weight Equation is improved, and the time-varying acceleration factor is introduced at the same time. 

The simulation results show that the improved PSO-BP algorithm can effectively balance the 

contradictions between global and local search of the particles, avoid the premature convergence of 

the standard PSO algorithm into the local optimal solution, and enhance the global optimal solution 

search ability, effectively improve the fault diagnosis rate of converter transformer. The improved 

PSO-BP algorithm proposed in this paper can be applied to the actual engineering combined with the 

experience of field maintenance personnel, which is a simple and effective method to solve the fault 

diagnosis problem of converter transformer. 
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