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Abstract. This paper focus on the subgraph isomorphism (SI) problem. We present an 

improved genetic algorithm, a heuristic method to search the optimal solution. The 

contribution of this paper is that we design a dedicated crossover algorithm and a new fitness 

function to measure the evolution process. Experiments show our improved genetic algorithm 

performs better than other heuristic methods. For a large graph, such as a subgraph of 40 nodes, 

our algorithm outperforms the traditional tree search algorithms. We find that the performance 

of our improved genetic algorithm does not decrease as the number of nodes in prototype 

graphs. 

1 Introduction 

Subgraph isomorphism plays an important role in computer vision, pattern recognition, bioinformatics 

[2], and even in chemistry [1]. Formally, two graphs G and G’ are said to be isomorphic if there is a 

one-to-one correspondence between their vertices and between their edges such that incidence 

relationship is preserved [4]. If the isomorphism is encountered between a graph and a subgraph of 

another larger graph, then it is called subgraph isomorphism or graph monomorphism [3]. 

Subgraph isomorphism problem has been studied for decades. [5] proposed a tree search algorithm 

and cut down the search space to accelerate the speed. [6] is considered the most efficient subgraph 

isomorphism algorithm which set lots of rules in order to cut the searching tree smaller. VF2 algorithm 

has many advantages, such as the cost function is strongly related to the size of the subgraph. However, 

when the subgraph is very large, the performance decreased seriously. Subgraph isomorphism is a 

generalization of both the maximum clique problem and the problem of testing whether a graph 

contains a Hamiltonian cycle, and is therefore NP-complete [3]. While tree search based algorithms 

are dedicated to solve the small subgraph isomorphism problem, some heurist method can deal with 

this NP-complete problems, such as simulated annealing idea of Kirkpatrick [7] and genetic search [8] 

devised based on the nature genetic processes. Rather than being motivated by the heat-bath analogy 

of simulated annealing, genetic search appeals to ideas concerning chromosomal evolution, which 

offers certain attractive computational features.  

In the next section we will give a SI problem modelling. We will introduce the improved genetic 

algorithm base on this model in section ‘Improved Algorithm’. Experiments and analysis will be 

arranged in the succeed section. At the end of this paper, we make a conclusion and summarize all this 

work. 
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2 Problem Modelling  

We model the graph as an adjacency matrix [9], as this is a very effective approach to describe a graph. 

The matrix contains only ‘1’s and ‘0’s. Each row and column represents a node in the graph. 

Moreover, the ‘1’ in a row represent the node connect to the other node, while the ‘0’s indicate no 

connections. For a graph  ,  g gG V E and a subgraph  ,  h hH V E  , the adjacency matrix of G and H 

are G=[gi, j] and H=[hi, j], respectively. The number of nodes in G and H are Ng and Nh. We define a 

transfer matrix [5] P to be    g hN rows N columns  matrix whose elements are only ‘1’s and ‘0’s, such 

that each row contains exactly one ‘1’. No column of matrix P contains more than one ‘1’. Thus if 

there exists a subgraph isomorphism, the adjacency matrix G and H satisfied Eq. 1. 
TP G P H      (1) 

Therefore, we transfer the SI problem to the problem of finding the transfer matrix P. 

Improved Algorithm 

Genetic algorithm contains encoding, population generating, crossover, mutation, selection and 

evaluation. In this section, we introduce the improved algorithm emphasizing the crossover part and 

evaluation part. 

2.1 Encoding 

In order to use GA algorithm to solve the problem, the first step is to encode the target. We have 

modelled the SI problem as finding a P matrix that satisfies Eq. 1. Here we need to encode the P 

matrix to be easier to calculate. We encode P as a vector V of length Nh, and a value i at position t 

indicating a node number, is an integer less than or equal to Ng. For example, V[i]=j is equivalent to 

PT[i, j]=1. Obviously, the permutation vector V and transfer matrix P can derive from each other. 

They are equivalent. Thus, we can say that encoding as vector V satisfies completeness, soundness and 

non-redundancy [10]. 

2.2 Population Generation 

Each individual of the population encodes as a permutation vector V. We use a random function to 

select Nh numbers of a permutation of Ng in order to guarantee the diversity of the population. Repeat 

this process until the population size big enough. In this paper, we set the population size as 9500. 

2.3 Crossover 

The crossover operation swaps parts of two parents in the population to generate children, which 

constitute the next generation. Generally, we hope that the children we derive inherit good parts of 

their parents. There have been many algorithms proposed for crossover. Such as partially matched 

crossover [11], ordered crossover [12], uniform partially matched crossover [13], and other algorithms 

based on these three. However, these excellent crossover algorithms do not work well in this situation, 

because they expect sequence individuals of indices while the permutation vector V is partial sequence. 

For clarity, let us consider an example with Nh=5, Ng=8. Fig. 1 demonstrates the improper of the 

UPMX algorithm in SI problem. This algorithm leads to that there are two ‘8’ in ‘Child2’, which does 

not satisfy the permutation. 

8
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Figure 1: the UPMX crossover process 
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We propose a non-sequence uniform partially matched crossover (NUPMX) algorithm to solve this 

problem. The algorithm is depicted in Table 1. 

2.4 Mutation 

When designing a genetic algorithm, mutation appears to be among the most important operations to 

escape local optima since it preserves the diversification in the population [14]. We randomly shuffle 

the attributes of the individual to get the mutant. [15] 

2.5 Evaluation and Selection 

To evaluate the fitness of each individual, we need to give each individual a comparable fitness score. 

Here we proposed Eq. 2 as the fitness. 

*( )*T Tfitness Vo P G P H Vo       (2) 

Vo is a 1 hN  vector composed with all ‘1’s. Fitness is a nature number that means the number of 

nodes that does not matched. If fitness equals zero, we say that H is a subgraph of G, and transfer 

matrix is the mapping function. The smaller the fitness is, the more similar graph H is to the subgraph 

of G. Therefore, in the selection algorithm, we try to select individuals with smaller fitness. In this 

paper, we use a K tournaments method [16] according to the fitness function Eq. 2. 

 

Table 1: NUPMX Algorithm 

Input parameters:  

ind1: The first individual participating in the crossover. 

ind2: The second individual participating in the crossover. 

Indpb: the probability to execute the swap 

1. for each indices in ind1 and ind2: 

2.     if random() < indpb: # execute the swap 

3.         if ind1(i) and ind2(i) both exist in ind1 and ind2: 

4.             swap ind1(position(ind2(i)), ind2(position(ind1(i)) 

5.             swap ind1(i) , ind2(i) 

6.         elseif ind1(i) does not exist in ind2, ind2(i) exist in ind1: 

7.             ind1(position(ind2(i))=ind1(i) 

8.             swap ind1(i), ind2(i) 

9.         elseif ind2(i) does not exist in ind1, ind1(i) exist in ind2: 

10.             Ind2(position(ind1(i))=ind2(i) 

11.             swap ind1(i), ind2(i) 

12.         elseif ind1(i) and ind2(i) both do not exist in ind1 and ind2: 

13.             swap ind1(i), ind2(i) 

algorithm end 

Output parameters: 

ind1: The first child after the crossover. 

ind2: The second child after the crossover. 

 

Now we have introduced the genetic algorithm. We encode this problem as optimizing a 

permutation vector to minimize Eq. 2. Moreover, we propose a NUPMX crossover algorithm to solve 

this problem. In the next section, we perform some experiment to test this improved genetic algorithm. 

3 Experiment 

We evaluate our improved genetic algorithm with some randomly generated graphs and make a 

cooperation to the tree search algorithm VF2 and another genetic algorithm ILS proposed in [17]. We 

compare the average deviation of solution value to the optimal solution (in percent). Results are shown 

in Table 2. 
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Table2: The compare of three algorithms 

 VF2 GA*ILS GA*NUPMX 

Nh=13 

Ng=18 

0 0.71% 0 

Nh=19 

Ng=24 

Inf 2.06% 0.91% 

Nh=25 

Ng=30 

Inf 4.50% 2.71% 

 

As VF2 can only deal with small graphs, when the number of node is larger than 19, VF2 takes 

unendurable time. The GA*NUPMX algorithm performs better than GA*ILS, in every dataset. 

Although our GA*NUPMX algorithm takes a little more time to derive the optimal solution, the error 

rate is much lower than GA*ILS. 

We also test our algorithm on a larger graph dataset with more than 100 nodes in a graph. The 

results are shown in Fig. 2. 
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Figure 2: Performance with different size of Ng 

The Fig.2 shows that the performance of GA*NUPMX is stable with the size of Ng less than 500. 

The error rate is no more than 20%. When the graph size is large enough, computation time takes 

longer than that when the size is smaller. Experiment also shows that the size of Ng has little influence 

to the performance of our algorithm. 

4 Summary 

In this paper, we propose GA*NUPMX algorithm to solve the subgraph isomorphism problem. We 

use the adjacency matrix to model the graph, and encode the problem as a permutation vector to make 

the problem easier for genetic searching. We also define an efficient fitness function for the 

optimization of this problem. Moreover, a dedicated crossover algorithm is proposed to raise the 

performance of genetic algorithm.  

The proposed GA*NUPMX algorithm is tested on three randomly generated problem sets. Results 

show that our algorithm can test subgraph isomorphism in a large graph with 500 nodes. Though the 

cost of time is larger than small graphs, but it can still be far faster than VF2 and can give an answer of 

this NP-complete problem. 

We will do some further experiment to figure out the influence of the size of initial population. 

Investigations to the other parameters of our algorithm should be carried out in the next work. The 

performance of our algorithm is expected to be improved in the future. 
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