
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

ISAMSE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 231 (2017) 012050 doi:10.1088/1757-899X/231/1/012050

An Improved Heuristic Method for Subgraph Isomorphism

Problem

Yingzhuo Xiang1, Jiesi Han1, Haijiang Xu2, Xin Guo 3

1 National Key Laboratory of Science and Technology on Blind Signal Processing,

Chengdu, China
2Jiangnan Institute of Computing Technology, Wuxi, China
3School of Mathematical Sciences of UESTC, Chengdu, China

Abstract. This paper focus on the subgraph isomorphism (SI) problem. We present an

improved genetic algorithm, a heuristic method to search the optimal solution. The

contribution of this paper is that we design a dedicated crossover algorithm and a new fitness

function to measure the evolution process. Experiments show our improved genetic algorithm

performs better than other heuristic methods. For a large graph, such as a subgraph of 40 nodes,

our algorithm outperforms the traditional tree search algorithms. We find that the performance

of our improved genetic algorithm does not decrease as the number of nodes in prototype

graphs.

1 Introduction

Subgraph isomorphism plays an important role in computer vision, pattern recognition, bioinformatics

[2], and even in chemistry [1]. Formally, two graphs G and G’ are said to be isomorphic if there is a

one-to-one correspondence between their vertices and between their edges such that incidence

relationship is preserved [4]. If the isomorphism is encountered between a graph and a subgraph of

another larger graph, then it is called subgraph isomorphism or graph monomorphism [3].

Subgraph isomorphism problem has been studied for decades. [5] proposed a tree search algorithm

and cut down the search space to accelerate the speed. [6] is considered the most efficient subgraph

isomorphism algorithm which set lots of rules in order to cut the searching tree smaller. VF2 algorithm

has many advantages, such as the cost function is strongly related to the size of the subgraph. However,

when the subgraph is very large, the performance decreased seriously. Subgraph isomorphism is a

generalization of both the maximum clique problem and the problem of testing whether a graph

contains a Hamiltonian cycle, and is therefore NP-complete [3]. While tree search based algorithms

are dedicated to solve the small subgraph isomorphism problem, some heurist method can deal with

this NP-complete problems, such as simulated annealing idea of Kirkpatrick [7] and genetic search [8]

devised based on the nature genetic processes. Rather than being motivated by the heat-bath analogy

of simulated annealing, genetic search appeals to ideas concerning chromosomal evolution, which

offers certain attractive computational features.

In the next section we will give a SI problem modelling. We will introduce the improved genetic

algorithm base on this model in section ‘Improved Algorithm’. Experiments and analysis will be

arranged in the succeed section. At the end of this paper, we make a conclusion and summarize all this

work.

2

1234567890

ISAMSE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 231 (2017) 012050 doi:10.1088/1757-899X/231/1/012050

2 Problem Modelling

We model the graph as an adjacency matrix [9], as this is a very effective approach to describe a graph.

The matrix contains only ‘1’s and ‘0’s. Each row and column represents a node in the graph.

Moreover, the ‘1’ in a row represent the node connect to the other node, while the ‘0’s indicate no

connections. For a graph  , g gG V E and a subgraph  , h hH V E , the adjacency matrix of G and H

are G=[gi, j] and H=[hi, j], respectively. The number of nodes in G and H are Ng and Nh. We define a

transfer matrix [5] P to be    g hN rows N columns matrix whose elements are only ‘1’s and ‘0’s, such

that each row contains exactly one ‘1’. No column of matrix P contains more than one ‘1’. Thus if

there exists a subgraph isomorphism, the adjacency matrix G and H satisfied Eq. 1.
TP G P H   (1)

Therefore, we transfer the SI problem to the problem of finding the transfer matrix P.

Improved Algorithm

Genetic algorithm contains encoding, population generating, crossover, mutation, selection and

evaluation. In this section, we introduce the improved algorithm emphasizing the crossover part and

evaluation part.

2.1 Encoding

In order to use GA algorithm to solve the problem, the first step is to encode the target. We have

modelled the SI problem as finding a P matrix that satisfies Eq. 1. Here we need to encode the P

matrix to be easier to calculate. We encode P as a vector V of length Nh, and a value i at position t

indicating a node number, is an integer less than or equal to Ng. For example, V[i]=j is equivalent to

PT[i, j]=1. Obviously, the permutation vector V and transfer matrix P can derive from each other.

They are equivalent. Thus, we can say that encoding as vector V satisfies completeness, soundness and

non-redundancy [10].

2.2 Population Generation

Each individual of the population encodes as a permutation vector V. We use a random function to

select Nh numbers of a permutation of Ng in order to guarantee the diversity of the population. Repeat

this process until the population size big enough. In this paper, we set the population size as 9500.

2.3 Crossover

The crossover operation swaps parts of two parents in the population to generate children, which

constitute the next generation. Generally, we hope that the children we derive inherit good parts of

their parents. There have been many algorithms proposed for crossover. Such as partially matched

crossover [11], ordered crossover [12], uniform partially matched crossover [13], and other algorithms

based on these three. However, these excellent crossover algorithms do not work well in this situation,

because they expect sequence individuals of indices while the permutation vector V is partial sequence.

For clarity, let us consider an example with Nh=5, Ng=8. Fig. 1 demonstrates the improper of the

UPMX algorithm in SI problem. This algorithm leads to that there are two ‘8’ in ‘Child2’, which does

not satisfy the permutation.

8

8

Figure 1: the UPMX crossover process

3

1234567890

ISAMSE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 231 (2017) 012050 doi:10.1088/1757-899X/231/1/012050

We propose a non-sequence uniform partially matched crossover (NUPMX) algorithm to solve this

problem. The algorithm is depicted in Table 1.

2.4 Mutation

When designing a genetic algorithm, mutation appears to be among the most important operations to

escape local optima since it preserves the diversification in the population [14]. We randomly shuffle

the attributes of the individual to get the mutant. [15]

2.5 Evaluation and Selection

To evaluate the fitness of each individual, we need to give each individual a comparable fitness score.

Here we proposed Eq. 2 as the fitness.

*()*T Tfitness Vo P G P H Vo    (2)

Vo is a 1 hN vector composed with all ‘1’s. Fitness is a nature number that means the number of

nodes that does not matched. If fitness equals zero, we say that H is a subgraph of G, and transfer

matrix is the mapping function. The smaller the fitness is, the more similar graph H is to the subgraph

of G. Therefore, in the selection algorithm, we try to select individuals with smaller fitness. In this

paper, we use a K tournaments method [16] according to the fitness function Eq. 2.

Table 1: NUPMX Algorithm

Input parameters:

ind1: The first individual participating in the crossover.

ind2: The second individual participating in the crossover.

Indpb: the probability to execute the swap

1. for each indices in ind1 and ind2:

2. if random() < indpb: # execute the swap

3. if ind1(i) and ind2(i) both exist in ind1 and ind2:

4. swap ind1(position(ind2(i)), ind2(position(ind1(i))

5. swap ind1(i) , ind2(i)

6. elseif ind1(i) does not exist in ind2, ind2(i) exist in ind1:

7. ind1(position(ind2(i))=ind1(i)

8. swap ind1(i), ind2(i)

9. elseif ind2(i) does not exist in ind1, ind1(i) exist in ind2:

10. Ind2(position(ind1(i))=ind2(i)

11. swap ind1(i), ind2(i)

12. elseif ind1(i) and ind2(i) both do not exist in ind1 and ind2:

13. swap ind1(i), ind2(i)

algorithm end

Output parameters:

ind1: The first child after the crossover.

ind2: The second child after the crossover.

Now we have introduced the genetic algorithm. We encode this problem as optimizing a

permutation vector to minimize Eq. 2. Moreover, we propose a NUPMX crossover algorithm to solve

this problem. In the next section, we perform some experiment to test this improved genetic algorithm.

3 Experiment

We evaluate our improved genetic algorithm with some randomly generated graphs and make a

cooperation to the tree search algorithm VF2 and another genetic algorithm ILS proposed in [17]. We

compare the average deviation of solution value to the optimal solution (in percent). Results are shown

in Table 2.

4

1234567890

ISAMSE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 231 (2017) 012050 doi:10.1088/1757-899X/231/1/012050

Table2: The compare of three algorithms

 VF2 GA*ILS GA*NUPMX

Nh=13

Ng=18

0 0.71% 0

Nh=19

Ng=24

Inf 2.06% 0.91%

Nh=25

Ng=30

Inf 4.50% 2.71%

As VF2 can only deal with small graphs, when the number of node is larger than 19, VF2 takes

unendurable time. The GA*NUPMX algorithm performs better than GA*ILS, in every dataset.

Although our GA*NUPMX algorithm takes a little more time to derive the optimal solution, the error

rate is much lower than GA*ILS.

We also test our algorithm on a larger graph dataset with more than 100 nodes in a graph. The

results are shown in Fig. 2.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

GA*NUPMX performance

Ng

E
rro

r r
at

e

Figure 2: Performance with different size of Ng

The Fig.2 shows that the performance of GA*NUPMX is stable with the size of Ng less than 500.

The error rate is no more than 20%. When the graph size is large enough, computation time takes

longer than that when the size is smaller. Experiment also shows that the size of Ng has little influence

to the performance of our algorithm.

4 Summary

In this paper, we propose GA*NUPMX algorithm to solve the subgraph isomorphism problem. We

use the adjacency matrix to model the graph, and encode the problem as a permutation vector to make

the problem easier for genetic searching. We also define an efficient fitness function for the

optimization of this problem. Moreover, a dedicated crossover algorithm is proposed to raise the

performance of genetic algorithm.

The proposed GA*NUPMX algorithm is tested on three randomly generated problem sets. Results

show that our algorithm can test subgraph isomorphism in a large graph with 500 nodes. Though the

cost of time is larger than small graphs, but it can still be far faster than VF2 and can give an answer of

this NP-complete problem.

We will do some further experiment to figure out the influence of the size of initial population.

Investigations to the other parameters of our algorithm should be carried out in the next work. The

performance of our algorithm is expected to be improved in the future.

5

1234567890

ISAMSE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 231 (2017) 012050 doi:10.1088/1757-899X/231/1/012050

Acknowledgements

Thanks for the cooperation of the Jiangnan of Computing Technology and UESTC. Dr. Xu and Dr.

Han help a lot in the experiment environment construction.

References

[1] Raymond, John W., and Peter Willett. "Maximum common subgraph isomorphism algorithms for

the matching of chemical structures." Journal of computer-aided molecular design 16.7 (2002):

521-533.

[2] Huan, Jun, Wei Wang, and Jan Prins. "Efficient mining of frequent subgraphs in the presence of

isomorphism." Data Mining, 2003. ICDM 2003. Third IEEE International Conference on. IEEE,

2003.

[3] Garey, Michael R., David S. Johnson, and Larry Stockmeyer. "Some simplified NP-complete

graph problems." Theoretical computer science 1.3 (1976): 237-267.

[4] Fortin, Scott. "The graph isomorphism problem." (1996).

[5] Ullmann, Julian R. "An algorithm for subgraph isomorphism." Journal of the ACM (JACM) 23.1

(1976): 31-42.

[6] Cordella, Luigi P., et al. "A (sub) graph isomorphism algorithm for matching large graphs." IEEE

transactions on pattern analysis and machine intelligence 26.10 (2004): 1367-1372.

[7] Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi. "Optimization by simulated annealing."

science 220.4598 (1983): 671-680.

[8] Fogel, David B. "An introduction to simulated evolutionary optimization." IEEE transactions on

neural networks 5.1 (1994): 3-14.

[9] Cvetković, Dragoš M., Michael Doob, and Horst Sachs. Spectra of graphs: theory and application.

Vol. 87. Academic Pr, 1980.

[10] Ono, Isao, Masayuki Yamamura, and Shigenobu Kobayashi. "A genetic algorithm for job-

shop scheduling problems using job-based order crossover." Evolutionary Computation, 1996.,

Proceedings of IEEE International Conference on. IEEE, 1996.

[11] Goldberg, David E., and Robert Lingle. "Alleles, loci, and the traveling salesman problem."

Proceedings of an International Conference on Genetic Algorithms and Their Applications. Vol.

154. Lawrence Erlbaum, Hillsdale, NJ, 1985.

[12] Golberg, D. E. "Genetic algorithms in search, optimization and machine learning reading."

MA: Addisonn-Wisley, USA (1989).

[13] Cicirello, Vincent A., and Stephen F. Smith. "Modeling GA performance for control

parameter optimization." Proceedings of the 2nd Annual Conference on Genetic and Evolutionary

Computation. Morgan Kaufmann Publishers Inc., 2000.

[14] Mühlenbein, Heinz. "How Genetic Algorithms Really Work: Mutation and Hillclimbing."

PPSN. Vol. 92. 1992.

[15] Whitley, Darrell. "A genetic algorithm tutorial." Statistics and computing 4.2 (1994): 65-85.

[16] Deb, Kalyanmoy. "An efficient constraint handling method for genetic algorithms." Computer

methods in applied mechanics and engineering 186.2 (2000): 311-338.

[17] Farahani, Mina Mazraeh, and Seyed Kamal Chaharsoughi. "A genetic and iterative local

search algorithm for solving subgraph isomorphism problem." Industrial Engineering and

Operations Management (IEOM), 2015 International Conference on. IEEE, 2015.

