ISAMSE 2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 231 (2017) 012009 doi:10.1088/1757-899X/231/1/012009

A tridiagonal parsimonious higher order multivariate Markov
chain model

Chao Wang'?, Chuan-sheng Yang*?

School of Mathematics, Physics and Information Science, Zhejiang Ocean University
’Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang
Province

Abstract. In this paper, we present a tridiagonal parsimonious higher-order multivariate
Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in
TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.

1 Introduction

Markov chains is an important implement in many research areas, such as, internet applications [2]
music [3], software testing[4], land cover change [5], energy consumption [6], speech recognition [7],
physics, gene expression [9], finance [10] and so on. It is helpful to develop a better model for a more
accurate prediction.by exploring.The relationships of different categorical data sequences is
meaningful to accurate prediction.

Different methods for multiple categorical data sequences prediction has been proposed, e.g., the
first-order multivariate Markov chain model, a more precise model named as higher-order multivariate
Markov chain model has presented by W.K Ching in [8]. An improved multivariate Markov chain
model has been proposed to speed up the convergence speed [10].

In this paper, we propose a tridiagonal parsimonious higher-order multivariate Markov chain model
for improving the prediction precision and reducing the parameter number in the model.

The organization of this paper is as follows. In Section 2, we review several definitions and models
of Markov chain model. In Section 3, a tridiagonal parsimonious higher-order multivariate Markov
chain model is proposed for multiple categorical data sequences. In Section 4, we estimate the
parameters of the tridiagonal parsimonious higher-order multivariate Markov chain model. Numerical
experiments show the effectiveness of our model in Section 5.

2 A review on the Markov chains
In this section, we briefly introduce several definitions and the first-order Markov chain model.
Definition 1[1] Let the state set of the categorical data sequence with m states be

M={12,....m}and 6, e M,k ={1,2,.. }. If the sequence {X,, X, X,,...} with m states satisfies
the following relationships:

Prob(X,,, =6, | % =6,% =6,....X, =6)

= PrOb(Xt+1 = U | X = ‘9t)
the sequence is called as first-order discrete-time Markov chain.

Definition 2 The conditional probability
PrOb(XHl = 0t+1 | Xt = et) (1)
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is called as the transition probability of the Markov chain.
Definition 3 Rewriting the transition probability as

p;x =Prob(x,, =j|x =k),vjkeM (2)
then the transition probability matrix is

p=[p;,].0<pj, Sl’z Pjx =L VjkeM.

j=1
Definition 4 Suppose that
X =PXy,

then X, =(x/,X?,...x")" is the state probability distribution and X, the initial probability
distribution.

3 TPHOMMCM
In this part, tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM)
is presented. It has two directions to approach probability distribution X .

For Vj,k e{L,2,...,s}hVte{n—1,n,.. }, the tridiagonal parsimonious higher-order multivariate
Markov chain model is

1
() — (h) 1 (5:K) y (k) E (h) (1K) (k)
XHl Zi k ph X —h+1 + 1 j’ -k ph (1 X —h+1
h=1, j=k -+ h=l,j=k (3)

1 Kk k) 1 k k
+ Zi()pfj )X( h+1+ Zﬂ'()kp(J )(1 X( IZ+1

li-kI=1 _lu —k|=1
where x{V, x%, ... x"(k =1,2,...,s) are the initial probability distributions, the normalization

constant 1/m keeps X, = (x2,x2,...x{)" as a probability vector. (3) satisfies

S A YA T YA, =1
h=1, j=k h=1, j=k lj-kl=1 lj—kl=1
AN A0, 20,V ke{l2,...,shvte{n-1n,..},

where x{), x®) and PYU* are defined the same as Section 2.3.

t+17
Let X =((x2 )7, (x7, (x")T) e IR™*, TPHOMMCM in matrix form has
Xt(+Jl) &b g2 - g@ts) Xt“)
Xt(+11) B penh ga - g9 Xt(j)
xgl) BV BE2 . BEY XD ) (4)
B&b gt - g\ _ xt(J)
1 |B®Y B®» . BZIJ1-XD
m-1 S :
B(Syl) B(S’Z) . B(S’S) 1— xt(J')
where if j=k
l(jl,ipl(j'k) ﬂ‘(jl,ipl(j’k) j’(jl,ipl(jlk) /1(jllipl(j,k)
| 0 0 0
BUY = 0 | 0 0
: ' 0 0
0 0 | 0
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LRI ARROTY L RO ARROY
| 0 0
Bk — 0 I 0 0
. . 0 0
0 0 | 0
andif | j-k|=1,
RO 00 ARI 0 L0
gio_| O 0 .. 0 B _ 0 0 .. 0
0 0 mnxmn 0 0 0 mnxmn
and
g gt 0 gD ped 0
gy g2 gy 0 gY pged gy 0 0
e S e B BB
0 0 BesD ged 0 0 BEsd e

mnsxmns mnsxmns

Here, the column sum of B*,B~ are not necessary equal to one.

4 Parameter estimation
In this section, we will estimate the parameters of TPHOMMCM.
Let's first estimate the transition matrices PU. Suppose that M ={1,2,...,m}is the state set, Fi{{;“) is

frequency from the i state at time r—h+1 in the kth sequence to the i, state at time r+1 in the jth
sequence for 1<i i, <m, 1<h<n, then the transition frequency matrices F!* of the data sequences

is
A ASEDRR ARG
Fh(j,k): f2(,ijl’k'h) fZ(,%Yk’h) fZ(,i'th)
(0 fn g
Normalizing the frequency transition matrices, probability transition matrix is
PUD RUAD L RN
P = Pz(,i:k’h) Pz(é:k’h) Pz(,i:k’h)
plLm  pljn o pliin
where
ik

m 1jl

(ikh) _ (jk,h)
pij,ik - Z fij,ik

ijzl
0 otherwise.

Next, the way of estimating the parameter z(j'jg will be presented. Let the joint stationary probability

LD L A )
=1

distribution be
X = (X)), (XY, (XN
where
X () =((X(J))T (X(j))T (X(i))T)T_
It has
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B*X +LB‘(1—X):X
m-1
Then
. 1 _ 1 _
X=(B'X-——B )X+—18 -1 (5)
The iteration matrix is B*X _L B~.
m-1

The iterative matrix M, of the convergence condition in TPHOMMCM satisfies

i A
M < max mZ MM e I

J,—k
ikl m-1
Imposing an upper bound a <1, for Vj,k e{l,2, ...,s}, Vhe{l,2,...,n}, it has the following

)
1 Ak~
additional constrains.

(h) (1)
mz Aok i > Sa.
[i-k|=1
One would expect that
1
B"X + B (1-X)-X|<w (6)
m-1
where @ >0 and w is as small as possible.
Transform (6) into a minimization problem:
min|B*X +—— B (1-X)-X
;“Jk m-1 (7)
subject to Ziﬂ“k’+ Zﬂ‘f}ﬁ DA+ DA, =1

h=1, j=k h=1, j=k |j—k|=1 |i-kI=1
Suppose that the norm is the infinite norm, (7) turns into foIIowing form (8)

mlnmax Zﬂ’ z h+l - t h+l)
h=1,j=k - 1 h=1,j= k
W) plik) k) W plik ()
+ Y AP+ Y LR - )}
|j-kl=1 J-kP=1 j
n n
. ) (h) ) o _
subject to Zﬂiz‘,k + Zﬂi/‘,—k + Zﬂw + Z’lz&—k =1
h=1,j=k h=1,j=k |j-k=1 Jj-kl=1

where [], is the i th entry of the vector. With the same process in [8], (8) becomes a linear
programming problem:
mlnz )

Ajk i

subject to
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@;j Aia
“i ZX(J')—Cj Ais
@;j A
@; ’1],75
@; Aja
“i Zx(j)—Cj Ais
@;j Aja
; Ai s
n
A0+ Z’l(h)k + AN SAm, =
h=1, j= h=1, j=k |j—k|=1 |i—k|=1
w; = 0
where
C/ _ [Pl(j“ffl)x(jfl), Pl(j'j)X(j), PZ(JL) , ""}jn(Jj
P01 P _ gDy 1 PUA( — 1)
! "m-1" "m-1" ’
1 PO = D), 1 PO = £9), 1 PRI — 5]
m-1 m-1 m-1
and
(€] (€] -
PR [ v U S R
itk T /1(1) ifli—kl=
ik | |J - |_

The multivariate Markov chain model can be transformed into a set of S linear programming
problems as follows:

mlnz , (10)
Jk i

subject to

> [b _ X(J)]

o 2 b, —X],

DAL TAL s S S =1

h=1, j=k h=1, j=k lj-k|=1 lj-k|=1

ﬂ,(h’ >0

AA;<a-l
where
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— (O ) () 20 4O
A' _(ljl’ /111’ lll’ﬂ'ls’i -1
) 2 (1)
’11 =jreee J J’ )
,=[A1,-,Az,-],
1 ... m ... m 1 1
1 ... m ... m 1 -1
A=l .. m .. m -1 1
-1 ... -m ... -m -1 -1
and
1
T

Here, Alj covers all of the rows of each component which has the two possible values, 1 and —1.
Then A has (s+n—1)x 25" rows.

5 Application to sales demand prediction with tridiagonal parsimonious higher-order
multivariate Markov chain model

In this part, the sales demand categorical data sequences are presented to show the effectiveness of the
tridiagonal parsimonious higher-order multivariate Markov chain model.

Sales demand are classified into six states (1,2,3,4,5,6), e.g., 1= no sales volume, 2= vary low sales
volume, 3= low sales volume, 4= standard sales volume, 5= fast sales volume, 6= vary fast sales
volume. The customer's sales demand states in the same customer group of five important products of
the company for a year is given in the Appendix [8].

Noting that )Tt is a predict probability at time t, X, a fact value at time t and X, =[X},..., X’T",

nA the data number of each sequence. If m, is the fact state at t in ith categorical data sequence,

=€, ={0,...010,...0} € IR™™ . We denote the prediction error in the models as pe which can be
estlmated by the equation:

nA
pe = ZHXT N Xt”z
t=8

In Tables, denote that « the convergence factor of the convergence condition, n is the order of the
model, M1 higher-order multivariate Markov chain model, M2 parsimonious higher-order
multivariate Markov chain model and m3 the tridiagonal parsimonious higher-order multivariate
Markov chain model.

Table 1: Prediction errs of M1, M2 and M3.

M1 |pn 13 18 23 28 33 38 43 48
pe 314.67 |298.10 |297.98 |298.42 [302.22 |301.40 |301.97 |299.97
M2 |pn 25 50 75 100 125 150 175 200

pe alpha=0.1 |779.52 |1079.1 |999.38 |759.03 |541.66 [418.49 |322.43 |250.27
pe alpha=0.2 |559.45 |728.10 |489.49 |250.72 |250.21 |246.60 |249.52 |249.55
pe alpha=0.3 |361.84 |404.49 |255.12 |247.55 |246.85 |247.1 |252.39 |251.34
pe alpha=0.4 |259.17 |256.83 |254.27 |253.74 |248.18 |247.64 |248.34 |248.32
pe alpha=0.5 |258.29 |256.50 |248.98 |248.85 |250.43 |248.65 |249.74 |249.74
pe alpha=0.6 |257.58 |256.13 |248.91 |248.64 |250.30 |248.55 [250.23 |250.23
pe alpha=0.7 [257.05 |255.72 |248.87 |248.54 |250.22 |248.46 |250.90 |250.90
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pe alpha=0.8 |256.63 |255.45 |248.92 [248.54 |250.20 |248.28 |251.54 |251.54
pe alpha=0.9 |258.65 |255.26 |249.15 |248.67 |250.33 |248.10 |252.28 |252.28
pe alpha=1.0 |263.19 |255.28 |249.52 |248.96 |250.62 |247.94 |252.99 |252.99

M3 |pn 13 18 23 28 33 38 43 48

pe alpha=0.1 |779.53 |836.46 |695.84 [516.65 |399.84 |341.59 |291.74 |253.93
pe alpha=0.2 [559.45 |591.87 |409.55 [257.03 |250.34 |249.95 |250.72 |250.48
pe alpha=0.3 |361.84 |370.79 |250 251.82 (248.59 |247.87 |247.9 248.25
pe alpha=0.4 |259.17 |247.37 |247.29 |247.84 |246.47 |247.01 |247.08 |246.6

pe alpha=0.5 |[258.29 |246.4 |246.31 [246.25 |245.75 |245.88 |245.88 |245.88
pe alpha=0.6 |257.59 |245.79 |245.8 [245.6 |245.14 |245.28 |245.28 |245.28
pe alpha=0.7 |257.05 |245.36 |245.28 [245.09 |244.61 |244.7 |244.69 |244.69
pe alpha=0.8 |256.63 |245.02 |244.84 |244.59 |244.19 |244.36 |244.36 |244.36
pe alpha=0.9 |258.66 |247.24 |246.87 |246.72 |246.42 |246.55 |246.55 |246.55
pe alpha=1.0 |263.19 |251.94 |251.51 |249.53 |251.22 |247.06 |247.06 |247.06

Table 2: CPU times of M1, M2 and M3.

M2 |pn 25 50 75 100 125 150 175 200
talpha=0.1 |0.078 |0.2028 0.9360 |0.5772 |1.1388 |[2.6520 |4.3212 |9.5473
talpha=0.2 |0.0936 |0.3276 0.6552 |0.6552 |1.4508 [3.4788 |6.7236 |10.498
talpha=0.3 |0.0936 |0.1872 0.6240 [0.7176 |1.5288 |3.0732 [6.0372 |10.670
talpha=0.4 |0.0936 |0.1248 0.7644 |0.6708 |1.4196 |3.1824 |6.6924 |10.920
talpha=0.5 |0.0936 |0.1872 0.7488 |0.6864 |1.4664 |3.2448 |6.8640 |10.249
talpha=0.6 |0.0624 |0.1560 0.7488 [0.6708 |1.4196 |3.2604 |6.5832 |[12.152
talpha=0.7 |0.0468 |0.1248 0.7800 |0.6708 |1.7316 |3.5100 |6.9888 |11.372
talpha=0.8 |0.0468 |0.1560 0.6864 [0.6396 |1.3416 |2.8860 |6.2868 |12.963
talpha=0.9 |0.0624 |0.1404 0.6864 |0.6708 |1.5288 |2.9952 |7.0980 |13.119
talpha=1.0 |0.0780 [0.1560 0.7488 [0.5928 |1.7160 |3.2136 |6.6612 |10.186

M3 |pn 13 18 23 28 33 38 43 48
talpha=0.1 |0.0468 |0.0780 0.0624 |[0.078 |0.1404 |0.1404 |0.1248 |0.3276
talpha=0.2 |0.0624 |0.0780 0.0936 [0.0936 |0.0780 [0.1248 |0.2028 |0.2340
talpha=0.3 |0.0312 |0.0312 0.0780 [0.0624 |0.1092 |0.1404 |0.156 0.2496
talpha=0.4 |0.0312 |0.0780 0.0312 [0.0936 |0.0624 [0.1248 |0.2028 |0.3276
talpha=0.5 |0.0624 |0.0312 0.0780 |0.0936 |0.1092 |0.156 |0.2028 |0.2652
talpha=0.6 |0.0936 |0.0624 0.0468 |0.0624 |0.1092 [0.156 |0.2028 |0.2340
talpha=0.7 |0.0468 |0.0624 0.0468 |0.0936 |0.078 |[0.1248 |0.2028 |0.3276
talpha=0.8 |0.0468 |0.0312 0.0936 [0.0624 |0.0936 [0.1248 |0.2028 |0.2496
talpha=0.9 |0.0468 |0.0624 0.0936 [0.0936 |0.1092 [0.1404 |0.2340 |0.2340
talpha=1.0 |0.0468 |0.0312 0.0624 |0.0936 |0.0780 [0.1248 |0.2184 |0.2340

From the results of Table 1-2, we find that the TPHOMMCM preforms better than parsimonious
higher-order multivariate Markov chain model and the higher-order multivariate Markov chain model
in parameter number control, and the prediction precision. In CPU time, TPHOMMCM s less than
parsimonious higher-order multivariate Markov chain model, especially in higher order.

6 Conclusions
We have investigated a tridiagonal parsimonious higher-order multivariate Markov chain model and
discussed its convergence condition. Numerical experiments show that the tridiagonal parsimonious
higher-order multivariate Markov chain model is efficient.



ISAMSE 2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 231 (2017) 012009 doi:10.1088/1757-899X/231/1/012009

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos.
61573321, 61272021, 61202206, 61173181, 61322211, 41301473 and 41301438), the Zhejiang
Provincial Natural Science Foundation of China (Nos. LZ12F03002 and LY14F030001) and Key
Fund Project of Sichuan Provincial Department of Educatio (Nos. 17za0003).

References
[1] A. Markov. “Extension of the limit theorems of probability theory to a sum of variables connected
in a chain”, Dynamic Probabilistic Systems, 1, pp. 552-577 (1971) .

[2] B. Nigam, S. Tokekar, S. Jain. “Predicting the next accessed web page using Markov model and
pageRank”, International Journal of Data Mining and Emerging Technologies, 3, pp. 73-80, (2013).

[3] D. Herremans, S. Weisser, K. Sorensen, D. Conklin. “Generating structured music for bagana
using quality metrics based on Markov models”, Expert Systems with Applications, 42, pp. 7424-
7435, (2015).

[4] J.A. Whittaker, M.G. Thomason. “A Markov chain model for statistical software testing”, [EEE
Transactions on Software engineering, 20, 812-824, (1994).

[5] J. H. Park, S. H. No, G. S. Lee. “Outlook analysis of future discharge according to land cover
change using CA-Markov technique based on GIS”, Journal of the Korean Association of
Geographic Information Studies, 16, pp. 25-39, (2013).

[6] J. H. Park, T. H. Hong. “Analysis of South Korea’s economic growth, carbon dioxide emission,
and energy consumption using the Markov switching model”, Renewable and Sustainable Energy
Reviews, 18, pp. 543-551, (2013).

[71 P. Dighe, A. Asaei, H. Bourlard. “Sparse Hidden Markov Models for Automatic Speech
Recognition”, No. EPFL-REPORT-210627 Idiap, (2015).

[8] W. Ching, M. Ng, E. Fung. “Higher-order multivariate Markov chains and their applications”,
Linear Algebra and its Applications, 428, pp. 492-507, (2008).

[91 W. Ching, M. Ng, E. Fung. “On Construction of stochastic genetic networks based on gene
expression sequences”, International Journal of Neural Systems, 15, pp. 297-310, (2005) .

[10] W. Ching, T. Siu, L. Li. “An improved parsimonious multivariate Markov chain model for credit
risk”, Journal of Credit Risk, 5, pp. 1-25, (2009).



